
École Polytechnique Fédérale de Lausanne

Master Thesis

Accelerated Sensor Fusion for
Drones and a Simulation
Framework for Spatial

Author August 17, 2017
Ruben Fiszel
ruben.fiszel@epfl.ch

Supervisors
Prof. Martin Odersky Prof. Oyekunle A. Olukotun
LAMP | EPFL PPL | Stanford
martin.odersky@epfl.ch kunle@stanford.edu

Abstract

POSE (position and orientation) estimation on drones relies on fusion of its
different sensors. The complexity of this task is to provide a good estimation
in real-time. We have developed a novel application of an asynchronous Rao-
Blackwellized Particle Filter and its implementation on hardware with the
Spatial language. We have also built a new development tool: scala-flow,
a data-flow simulation tool inspired by Simulink with a Spatial integration.
Finally, we have built an interpreter for the Spatial language which made
possible the integration of Spatial in scala-flow.

Contents

Table of Contents 3

Introduction 4
The decline of Moore’s law . 4
The rise of Hardware . 4
Hardware as companion accelerators 6
The right metric: Perf/Watt . 6
Spatial . 6
Embedded systems and drones . 7

1 Sensor fusion algorithm for POSE estimation of drones: Asyn-
chronous Rao-Blackwellized Particle filter 8
Drones and collision avoidance . 9
Sensor fusion . 10
Notes on notation and conventions 11
POSE . 11
Trajectory data generation . 11
Quaternion . 13
Helper functions and matrices . 14
Model . 14
Sensors . 15
Control inputs . 18
Model dynamic . 19
State . 19
Observation . 19
Filtering and smoothing . 20
Complementary Filter . 20
Asynchronous Augmented Complementary Filter 22
Kalman Filter . 23
Asynchronous Kalman Filter . 25
Extended Kalman Filters . 26
Unscented Kalman Filters . 30
Particle Filter . 31
Rao-Blackwellized Particle Filter . 35

1

Algorithm summary . 40
Results . 41
Conclusion . 42

2 A simulation tool for data flows with Spatial integration:
scala-flow 45
Purpose . 45
Source, Sink and Transformations . 46
Demo . 47
Block . 49
Graph construction . 50
Buffer and cycles . 51
Source API . 52
Batteries . 55
Batch . 56
Scheduler . 57
Replay . 57
Multi-Scheduler graph . 58
InitHook . 60
ModelHook . 60
NodeHook . 61
Graphical representation . 61
FlowApp . 61
Spatial integration . 61
Conclusion . 63

3 An interpreter for Spatial 64
Spatial: A Hardware Description Language 64
Argon . 65
Staged type . 66
IR . 67
Transformer and traversal . 68
Language virtualization . 68
Source Context . 69
Meta-expansion . 69
Codegen . 70
Staging compiler flow . 70
Simulation in Spatial . 71
Benefits of the interpreter . 71
Interpreter . 72
Usage . 72
Debugging nodes . 72
Interpreter stream . 74
Implementation . 75
Conclusion . 76

4 Spatial implementation of an asynchronous Rao-Blackwellized
Particle Filter 77

2

Area . 77
Parallel patterns . 78
Control flows . 78
Numeric types . 80
Vector and matrix module . 82
Mini Particle Filter . 85
Rao-Blackwellized Particle Filter . 85
Insights . 85
Conclusion . 86

Conclusion 87

Acknowledgments 88

Appendix 89
Mini Particle Filter . 89
Rao-Blackwellized Particle Filter . 93

References 103

3

Introduction

The decline of Moore’s law

Moore’s law1 has prevailed in the computation world for the last four
decades. Each new generation of processor comes the promise of exponentially
faster execution. However, transistors are reaching the scale of 10nm, only
one hundred times bigger than an atom. Unfortunately, the quantum rules
of physics governing the infinitesimally small start to manifest themselves. In
particular, quantum tunneling moves electrons across classically insurmount-
able barriers, making computations approximate, resulting in a non negligible
fraction of errors.

The rise of Hardware

Hardware and Software respectively describe here programs that are
executed as code for a general purpose processing unit and programs that are
a hardware description and synthesized as circuits. The dichotomy is not very
well-defined and we can think of it as a spectrum. General-purpose computing
on graphics processing units (GPGPU) is in-between in the sense that it is
general purpose but relevant only for embarrassingly parallel tasks2 and very
efficient when used well. GPUs have benefited from high-investment and many
generations of iterations and hence, for some tasks they can match with or even
surpass hardware such as field-programmable gate arrays (FPGA).

The option of custom hardware implementations has always been there,
but application-specific integrated circuit (ASIC) has prohibitive costs upfront
(near $100M for a tapeout). Reprogrammable hardware like FPGAs have

1The observation that the number of transistors in a dense integrated circuit doubles
approximately every two years.

2An embarrassingly parallel task is one where little or no effort is needed to separate the
problem into a number of parallel tasks. This is often the case where there is little or no
dependency or need for communication between those parallel tasks, or for results between
them.

4

Figure 1: The number of transistors throughout the years. We can observe a
recent start of a decline

Figure 2: Hardware vs Software

5

only been used marginally and for some specific industries like high-frequency
trading. But now Hardware is the next natural step to increase performance, at
least until a computing revolution happens, e.g: quantum computing, yet this
sounds unrealistic in a near future. Nevertheless, hardware do not enjoy the
same quality of tooling, language and integrated development environments
(IDE) as software. This is one the motivations behind Spatial: bridging the gap
between software and hardware by abstracting control flow through language
constructions.

Hardware as companion accelerators

In most cases, hardware would be inappropriate: running an OS as
hardware would be impracticable. Nevertheless, as a companion to a central-
processing unit (CPU also called “the host”), it is possible to get the best
of both worlds: the flexibility of software on a CPU with the speed of hard-
ware. In this setup, hardware is considered an “accelerator” (hence, the term
“hardware accelerator”). It accelerates the most demanding subroutines of the
CPU. This companionship is already present in modern computer desktops in
the form of GPUs for shader operations and sound cards for complex sound
transformation/output.

The right metric: Perf/Watt

The right evaluation metric for accelerators is performance per energy,
as measured in FLOPS per Watt. This is a fair metric for comparing different
hardware and architecture because it reveals its intrinsic properties as a com-
puting element. If the metric was solely performance, then it would be enough
to stack the same hardware and eventually reach the scale of a super-computer.
Performance per dollar is not a good metric either because it does not account
for the cost of energy at runtime. Hence, Perf/Watt is a fair metric to compare
architectures.

Spatial

At the DAWN lab, under the lead of Prof. Olukotun and his grad stu-
dents, is developed an Hardware Description Language (HDL) implemented
as an embedded scala DSL spatial and its compiler to program Hardware
in a higher-level, more user-friendly, more productive language than Verilog.
In particular, control flows are automatically generated when possible. This
should enable software engineers to unlock the potential of Hardware. A cus-
tom CGRA, Plasticine, has been developed in parallel to Spatial. It leverages

6

http://arsenalfc.stanford.edu/kunle
https://github.com/stanford-ppl/spatial-lang

some recurrent patterns as the parallel patterns and it aims at being the most
efficient reprogrammable architecture for Spatial.

Th upfront cost is large but once at a big enough scale, Plasticine could
be deployed as an accelerator in a wide range of use-cases, from the most
demanding server applications to embedded systems with heavy computing
requirements.

Embedded systems and drones

Embedded systems are limited by the amount of power at disposal in
the battery and may also have size constraints. At the same time, especially
for autonomous vehicles, there is a great need for computing power.

Thus, developing drone applications with Spatial demonstrates the
advantages of the platform. As a matter of fact, the filter implementation was
only made possible because it is run on a hardware accelerator. It would be
unfeasible to run it on more conventional micro-transistors. Particle filters,
the family of filter which encompasses the types developed here, being very
computationally expensive, are very seldom used for drones.

7

1 | Sensor fusion algorithm
for POSE estimation of
drones: Asynchronous
Rao-Blackwellized Parti-
cle filter

POSE is the combination of the position and orientation of an object.
POSE estimation is important for drones. It is a subroutine of SLAM (Simul-
taneous localization and mapping) and it is a central part of motion planning
and motion control. More accurate and more reliable POSE estimation results
in more agile, more reactive and safer drones. Drones are an intellectually
stimulating topic and in the near-future they might also see their usage in-
crease exponentially. In this context, developing and implementing new filter
for POSE estimation is both important for the field of robotics but also to
demonstrate the importance of hardware acceleration. Indeed, the best and
last filter presented here is only made possible because it can be hardware accel-
erated with Spatial. Furthermore, particle filters are embarrassingly parallel
algorithms. Hence, they can leverage the potential of a dedicated hardware
design. The Spatial implementation will be presented in Part IV.

Before expanding on the Rao-Blackwellized Particle Filter (RBPF),
we will introduce here several other filters for POSE estimation for highly
dynamic objects: Complementary filter, Kalman Filter, Extended Kalman
Filter, Particle Filter and finally Rao-Blackwellized Particle filter. This ranges
from the most conceptually simple, to the most complex. This order is justified
because complex filters aim to alleviate some of the flaws of their simpler
counterparts. It is important to understand which one and how.

The core of the problem we are trying to solve is to track the current
position of the drone given the noisy measurements of the sensor. It is a
challenging problem because a good algorithm must take into account that
the measurements are noisy and that the transformation applied to the state

8

are non-linear, because of the orientation components of the state. Particle
filters are efficient to handle non-linear state transformations and that is the
intuition behind the development of the RBPF.

All the following filters are developed and tested in scala-flow. scala-
flow will be expanded in part II of this thesis. For now, we will focus on the
model and the results, and leave the implementation details for later.

Drones and collision avoidance

The original motivation for the development of accelerated POSE es-
timation is for the task of collision avoidance by quadcopters. In particular,
a collision avoidance algorithm developed at the ASL lab and demonstrated
here (https://youtu.be/kdlhfMiWVV0)

Figure 1.1: Ross Allen fencing with his drone

where the drone avoids the sword attack from its creator. At first, it
was thought of accelerating the whole algorithm but it was found that one
of the most demanding subroutines was pose estimation. Moreover, it was
wished to increase the processing rate of the filter such that it could match
the input with the fastest sampling rate: its inertial measurement unit (IMU)
containing an accelerometer, a gyroscope and a magnetometer.

The flamewheel f450 is the typical drone in this category. It is sur-
prisingly fast and agile. With the proper commands, it can generate enough
thrust to avoid any incoming object in a very short lapse of time.

9

https://asl.stanford.edu/
https://www.youtube.com/watch?v=kdlhfMiWVV0

Figure 1.2: The Flamewheel f450

Sensor fusion

Sensor fusion is the combination of sensory data or data derived from
disparate sources such that the resulting information has less uncertainty than
what would be possible if these sources were to be used individually. In the
context of drones, it is very useful because it enables us to combine many
imprecise sensor measurements to form a more precise one like having precise
positioning from 2 less precise GPS (dual GPS setting). It can also allows
us to combine sensors with different sampling rates: typically, precise sensors
with low sampling rate and less precise sensors with high sampling rates. Both
cases will be relevant here.

A fundamental explanation of why this is possible at all comes from
the central limit theorem: one sample from a distribution with a low variance
is as good as n samples from a distribution with variance n times higher.

V(Xi) = σ2 E(Xi) = µ

X̄ = 1
n

∑
Xi

V(X̄) = σ2

n
E(X̄) = µ

10

Notes on notation and conventions

The referential by default is the fixed world frame.

• x designates a vector
• xt is the random variable x at time t
• xt1:t2 is the product of the random variable x between t1 included and

t2 included
• x(i) designates the random variable x of the arbitrary particle i
• x̂ designates an estimated variable

POSE

POSE is the task of estimating the position and orientation of an
object through time. It is a subroutine of Software Localization And Mapping
(SLAM). We can formalize the problem as:

At each timestep, find the best expectation of a function of the hidden
variable state (position and orientation), from their initial distribution and
the history of observable random variables (such as sensor measurements).

• The state x
• The function g(x) such that g(xt) = (pt, qt) where p is the position and

q is the attitude as a quaternion.
• The observable variable y composed of the sensor measurements z and

the control input u

The algorithm inputs are:

• control inputs ut (the commands sent to the flight controller)
• sensor measurements zt coming from different sensors with different sam-

pling rate
• information about the sensors (sensor measurements biases and matrix

of covariance)

Trajectory data generation

The difficulties with using real flight data is that you need to get the
true trajectory and you need enough data to check the efficiency of the filters.

To avoid these issues, the flight data is simulated through a model of
trajectory generation from [1]. Data generated this way is called synthetic
data. The algorithm inputs are the motion primitives defined by the quad-
copter’s initial state, the desired motion duration, and any combination of

11

components of the quadcopter’s position, velocity and acceleration at the mo-
tion’s end. The algorithm is essentially a closed form solution for the given
primitives. The closed form solution minimizes a cost function related to the
input aggressiveness.

The bulk of the method is that a differential equation representing
the difference of position, velocity and acceleration between the starting and
ending state is solved with the Pontryagin’s minimum principle using the ap-
propriate Hamiltonian. Then, from that closed form solution, a per-axis cost
can be calculated to pick the “least aggressive” trajectory out of different
candidates. Finally, the feasibility of the trajectory is computed using the
constraints of maximum thrust and body rate (angular velocity) limits.

For the purpose of this work, a scala implementation of the model
was written. Then, some keypoints containing Gaussian components for the
position, velocity acceleration, and duration were tried until a feasible set of
keypoints was found. This method of data generation is both fast and a good
enough approximation of the actual trajectories that a drone would perform
in the real world.

Figure 1.3: Visualization of an example of a synthetic generated flight trajec-
tory

12

https://en.wikipedia.org/wiki/Pontryagin%27s_maximum_principle
https://en.wikipedia.org/wiki/Hamiltonian_(control_theory)

Quaternion

Quaternions are extensions of complex numbers with 3 imaginary parts.
Unit quaternions can be used to represent orientation, also referred to as atti-
tude. Quaternions algebra make rotation composition simple and quaternions
avoid the issue of gimbal lock.1 In all filters presented, quaternions represent
the attitude.

q = (q.r, q.i, q.j, q.k)t = (q.r, ϱ)T

Quaternion rotations composition is: q2q1 which results in q1 being
rotated by the rotation represented by q2. From this, we can deduce that
angular velocity integrated over time is simply qt if q is the local quaternion
rotation by unit of time. The product of two quaternions (also called Hamilton
product) is computable by regrouping the same type of imaginary and real
components together and accordingly to the identity:

i2 = j2 = k2 = ijk = −1

Rotation of a vector by a quaternion is done by: qvq∗ where q is the
quaternion representing the rotation, q∗ its conjugate and v the vector to be
rotated. The conjugate of a quaternion is:

q∗ = −1
2

(q + iqi + jqj + kqk)

The distance of between two quaternions, useful as an error metric is
defined by the squared Frobenius norms of attitude matrix differences [2].

∥A(q1) − A(q2)∥2
F = 6 − 2Tr[A(q1)At(q2)]

where

A(q) = (q.r2 − ∥ϱ∥2)I3×3 + 2ϱϱT − 2q.r[ϱ×]

[ϱ×] =

 0 −q.k q.j
q.k 0 −q.i

−q.j q.i 0

1Gimbal lock is the loss of one degree of freedom in a three-dimensional, three-gimbal

mechanism that occurs when the axes of two of the three gimbals are driven into a parallel
configuration, “locking” the system into rotation in a degenerate two-dimensional space.

13

Helper functions and matrices

We introduce some helper matrices.

• Rb2f {q} is the body to fixed vector rotation matrix. It transforms vector
in the body frame to the fixed world frame. It takes as parameter the
attitude q.

• Rf2b{q} is its inverse matrix (from fixed to body).
• T2a = (0, 0, 1/m)T is the scaling from thrust to acceleration (by dividing

by the weight of the drone: F = ma ⇒ a = F/m) and then multiplying
by a unit vector (0, 0, 1)

•
R2Q(θ) = (cos(∥θ∥/2), sin(∥θ∥/2) θ

∥θ∥
)

is a function that convert from a local rotation vector θ to a local quater-
nion rotation. The definition of this function come from converting θ to
a body-axis angle, and then to a quaternion.

•
Q2R(q) = (q.i ∗ s, q.j ∗ s, q.k ∗ s)

is its inverse function where n = arccos(q.w) ∗ 2 and s = n/ sin(n/2)
• ∆t is the lapse of time between t and the next tick (t+1)

Model

The drone is assumed to have rigid-body physics. It is submitted to the
gravity and its own inertia. A rigid body is a solid body in which deformation
is zero or so small it can be neglected. The distance between any two given
points on a rigid body remains constant in time regardless of external forces
exerted on it. This enables us to summarize the forces from the rotor as a
thrust oriented in the direction normal to the plane formed by the 4 rotors,
and an angular velocity.

Those variables are sufficient to describe the evolution of our drone
with rigid-body physics:

• a the total acceleration in the fixed world frame
• v the velocity in the fixed world frame
• p the position in the fixed world frame
• ω the angular velocity
• q the attitude in the fixed world frame

14

Sensors

The sensors at the drone’s disposition are:

• Accelerometer: It generates aA a measurement of the total accelera-
tion in the body frame referential the drone is submitted to at a high
sampling rate. If the object is submitted to no acceleration then the
accelerometer measure the earth’s gravity field. From that information,
it could be possible to retrieve the attitude. Unfortunately, we are in
a highly dynamic setting. Thus, it is possible when we can subtract
the drone’s acceleration from the thrust to the total acceleration. This
would require to know exactly the force exerted by the rotors at each
instant. In this work, we assume that doing that separation, while being
theoretically possible, is too impractical. The measurements model is:

aA(t) = Rf2b{q(t)}a(t) + aA
ϵ

where the covariance matrix of the noise of the accelerometer is RaA 3×3
and

aA
ϵ ∼ N (0, RaA)

.

• Gyroscope:It generates ωG a measurement of the angular velocity in
the body frame of the drone at the last timestep at a high sampling
rate. The measurement model is:

ωG(t) = ω + ωG
ϵ

where the covariance matrix of the noise of the accelerometer is RωG 3×3
and

ωG
ϵ
t ∼ N (0, RωG)

.

• Position: It generates pV a measurement of the current position at a
low sampling rate. This is usually provided by a Vicon (for indoor),
GPS, a Tango or any other position sensor. The measurement model
is:

pV(t) = p(t) + pV
ϵ

where the covariance matrix of the noise of the position is RpV 3×3 and

pV
ϵ ∼ N (0, RpV)

.

• Attitude: It generates qV a measurement of the current attitude. This
is usually provided in addition to the position by a Vicon or a Tango at
a low sampling rate or the Magnemoter at a high sampling rate if the
environment permits it (no high magnetic interference nearby like iron

15

contamination). The magnetometer retrieves the attitude by assuming
that the sensed magnetic field corresponds to the earth’s magnetic field.
The measurement model is:

qV(t) = q(t) ∗ R2Q(qV
ϵ)

where the 3 × 3 covariance matrix of the noise of the attitude in radian
before being converted by R2Q is RqV 3×3 and

qV
ϵ ∼ N (0, RqV)

.

• Optical Flow: A camera that keeps track of the movement by compar-
ing the difference of the position of some reference points. By using a
companion distance sensor, it is able to retrieve the difference between
the two perspective and thus the change in angle and position.

dqO(t) = (q(t − k)q(t)) ∗ R2Q(dqO
ϵ)

dpO(t) = (p(t) − p(t − k)) + dpO
ϵ

where the 3×3 covariance matrix of the noise of the attitude variation
in radian before being converted by R2Q is RdqO 3×3 and

dqO
ϵ ∼ N (0, RdqO)

and the position variation covariance matrix RdpO 3×3 and

dpO
ϵ ∼ N (0, RdpO)

.

The notable difference with the position or attitude sensor is that the
optical flow sensor, like the IMU, only captures time variation, not absolute
values.

• Altimeter: An altimeter is a sensor that measure the altitude of the
drone. For instance a LIDAR measure the time for the laser wave to
reflect on a surface that is assumed to be the ground. A smart strategy
is to only use the altimeter which is oriented with a low angle to the
earth, else you also have to account that angle in the estimation of the
altitude.

zA(t) = sin(pitch(q(t)))(p(t).z + zϵ
A)

RzA 3×3 and
zϵ

A ∼ N (0, RzA)

Some sensors are more relevant indoor and some others outdoor:

16

Figure 1.4: Optical flow from a moving drone

Figure 1.5: Rendering of the LIDAR laser of an altimeter

17

Figure 1.6: A Vicon setup

• Indoor: The sensors available indoor are the accelerometer, the gyro-
scope and the Vicon. The Vicon is a system composed of many sensors
around a room that is able to track very accurately the position and
orientation a mobile object. One issue with relying solely on the Vicon
is that the sampling rate is low.

• Outdoor: The sensors available outdoor are the accelerometer, the gy-
roscope, the magnetometer, two GPS, an optical flow and an altimeter.

We assume that since the biases of the sensor could be known prior to
the flight, both the sensor output measurements have been calibrated with no
bias. Some filters like the ekf2 of the px4 flight stack keep track of the sensor
biases but this is a state augmentation that was not deemed worthwhile.

Control inputs

Observations from the control input are not strictly speaking measure-
ments but input of the state-transition model. The IMU is a sensor, thus
strictly speaking, its measurements are not control inputs. However, in the
literature, it is standard to use its measurements as control inputs. One of
the advantage is that the IMU measures exactly the data we need for a predic-
tion through the model dynamic. If we used instead a transformation of the
thrust sent as command to the rotors, we would have to account for the ro-
tors imprecision, the wind and other disturbances. Another advantage is that
since the IMU has very high sampling rate, we can update very frequently the
state with new transitions. The drawback is that the accelerometer is noisy.
Fortunately, we can take into account the noise as a process model noise.

The control inputs at disposition are:

18

https://dev.px4.io/en/tutorials/tuning_the_ecl_ekf.html

• Acceleration: aAt from the acceloremeter
• Angular velocity: ωGt from the gyroscope.

Model dynamic

• a(t + 1) = Rb2f {q(t + 1)}(aAt + aA
ϵ
t) where aϵ

t ∼ N (0, Qat)
• v(t + 1) = v(t) + ∆ta(t) + vϵ

t where vϵ
t ∼ N (0, Qvt)

• p(t + 1) = p(t) + ∆tv(t) + pϵ
t where pϵ

t ∼ N (0, Qpt)
• ω(t + 1) = ωGt + ωG

ϵ
t where pϵ

t ∼ N (0, QωGt
)

• q(t + 1) = q(t) ∗ R2Q(∆tω(t))

Note that in our model, q(t + 1) must be known. Fortunately, as we
will see later, our Rao-Blackwellized Particle Filter is conditioned under the
attitude so it is known.

State

The time series of the variables of our dynamic model constitute a
hidden Markov chain. Indeed, the model is “memoryless” and depends only
on the current state and a sampled transition.

States contain variables that enable us to keep track of some of those
hidden variables which is our ultimate goal (for POSE p and q). States at
time t are denoted by xt. Different filters require different state variables
depending on their structure and assumptions.

Observation

Observations are revealed variables conditioned under the variables
of our dynamic model. Our ultimate goal is to deduce the states from the
observations.

Observations contain the control input u and the measurements z.

yt = (zt, ut)T = (pVt, qVt), (tCt, ωCt))T

19

Filtering and smoothing

Smoothing is the statistical task of finding the expectation of the
state variable from the past history of observations and multiple observation
variables ahead

E[g(x0:t)|y1:t+k]

Which expand to,

E[(p0:t, q0:t)|(z1:t+k, u1:t+k)]

k is a contant and the first observation is y1

Filtering is a kind of smoothing where you only have at disposal the
current observation variable (k = 0)

Complementary Filter

The complementary filter is the simplest of all filters and is commonly
used to retrieve the attitude because of its low computational complexity. The
gyroscope and accelerometer both provide a measurement that can help us to
estimate the attitude. Indeed, the gyroscope reads noisy measurement of the
angular velocity from which we can retrieve the new attitude from the past
one by time integration: qt = qt−1 ∗ R2Q(∆tω).

This is commonly called “Dead reckoning”2 and is prone to accumu-
lation error, referred to as drift. Indeed, like Brownian motions, even if the
process is unbiased, the variance grows with time. Reducing the noise can-
not solve the issue entirely: even with extremely precise instruments, you are
subject to floating-point errors.

Fortunately, even though the accelerometer gives us a highly noisy
(vibrations, wind, etc …) measurement of the orientation, it is not impacted
by the effects of drifting because it does not rely on accumulation. Indeed, if
not subject to other accelerations, the accelerometer measures the gravity field
orientation. Since this field is oriented toward earth, it is possible to retrieve
the current rotation from that field and by extension the attitude. However,
a drone is under the influence of continuous and significant acceleration and

2The etymology for “Dead reckoning” comes from the mariners of the XVIIth century
that used to calculate the position of the vessel with log book. The interpretation of “dead”
is subject to debate. Some argue that it is a misspelling of “ded” as in “deduced”. Others
argue that it should be read by its old meaning: absolute.

20

vibration. Hence, the assumption that we retrieve the gravity field directly
is wrong. Nevertheless, we could solve this by subtracting the acceleration
deduced from the thrust control input. It is unpractical so this approach is
not pursued in this work, but understanding this filter is still useful.

The idea of the filter itself is to combine the precise “short-term” mea-
surements of the gyroscope subject to drift with the “long-term” measurements
of the accelerometer.

State

This filter is very simple. The only requirement is that the last esti-
mated attitude must be stored along with its timestamp in order to calculate
∆t.

xt = qt

q̂t+1 = α(q̂t + ∆tωt) + (1 − α)qAt+1

α ∈ [0, 1]. Usually, α is set to a high-value like 0.98. It is very intuitive to
see why this should approximately “work”, the data from the accelerometer
continuously corrects the drift from the gyroscope.

┌──────┐ ┌───┐
│ │ │ │
│ │<┘┌───────────────────────────┐ ┌────────┐ │
│ ├──┘ │ │ │ │ ┌─────────┐
│Buffer│ ┌─────┐ ┌───────┐ └─>│ │ │ │ │
│ │ │ │ │ │ │Rotation│ │ │ │ ┌─────────┐
│ ├────>│ ├───>│BR2Quat├───────>│ │ └─┤ │ │ │
│ │ │Integ│ │ │ │ ├───>│Combining├─>│Block out│
└──────┘ ┌─>│ │ └───────┘ └────────┘ │ │ │ │

│ │ │ ┌─>│ │ └─────────┘
┌───────┐ │ └─────┘┌────────────────┐ ┌────────┐ │ │ │
│ │ │ │ │ │ │ │ └─────────┘
│ ├─┘ │┌─────────────┐ └──>│ │ │
│Map IMU├───────────┘│ │ │ACC2Quat├─┘
│ │ │Map CI Thrust├────>│ │
│ │ │ │ │ │
└───────┘ └─────────────┘ └────────┘

Figure 1.7: Complementary Filter graph structure

Figure 9 is the plot of the distance from the true quaternion after 15s
of an arbitrary trajectory when α = 1.0 meaning that the accelerometer does
not correct the drift.

Figure 10 is that same trajectory with α = 0.98.

21

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

t ime

0

1

v
a

lu
e

Figure 1.8: CF with alpha = 1.0

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

t ime

0

1

v
a

lu
e

Figure 1.9: CF with alpha = 0.98

We can observe here the long-term importance of being able to correct
the drift, even if ever so slightly at each timestep.

Asynchronous Augmented Complementary Filter

As explained previously, in this highly-dynamic setting, combining the
gyroscope and the accelerometer to retrieve the attitude is not satisfactory.
However, we can reuse the intuition from the complementary filter, which is to
combine precise but drifting short-term measurements to other measurements
that do not suffer from drifting. This enables a simple and computationally
inexpensive novel filter that we will be able to use later as a baseline. In
this context, the short-term measurements are the acceleration and angular
velocity from the IMU, and the non-drifting measurements are the position
and attitude from the Vicon.

We will also add the property that the data from the sensors are asyn-
chronous. As with all following filters, we deal with asynchronicity by updat-
ing the state to the most likely state so far for any new sensor measurement
incoming. This is a consequence of the sensors having different sampling rate.

• IMU update
vt = vt−1 + ∆tvaAt

ωt = ωGt

pt = pt−1 + ∆tvt−1

qt = qt−1R2Q(∆tωt−1)

• Vicon update

pt = αpV + (1 − α)(pt−1 + ∆tvt−1)

qt = αqV + (1 − α)(qt−1R2Q(∆tωt−1))

22

State

The state has to be more complex because the filter now estimates
both the position and the attitude. Furthermore, because of asynchronicity,
we have to store the last angular velocity, the last linear velocity, and the last
time the linear velocity has been updated (to retrieve ∆tv = t − ta where ta is
the last time we had an update from the accelerometer).

xt = (pt, qt, ωt, at, ta)

The structure of this filter and all of the filters presented thereafter is
as follow:

┌───────┐ ┌──────┐ ┌─────┐ ┌─────────┐
│ │ │ │ │ │ │ │
│Map IMU├─┐ ┌─────┐ ┌───────┐ │ ├──>│P & Q├─>│Block out│
│ │ │ │ │ │ ├──>│Update│ │ │ │ │
└───────┘ └──>│ │ │ │ │ ├─┐ └─────┘ └─────────┘

│Merge├─>│ZipLast│ │ │ │
┌─────────┐ ┌─>│ │ │ │<┐ └──────┘ │ ┌──────┐
│ │ │ │ │ │ │ │ │ │ │
│Map Vicon├─┘ └─────┘ └───────┘ │ │ │ │
│ │ │ └──────────>│Buffer│
└─────────┘ └──────────────────────┤ │

│ │
└──────┘

Figure 1.10: A graph of the filters structure in scala-flow

Kalman Filter

Bayesian inference

Bayesian inference is a method of statistical inference in which Bayes’
theorem is used to update the probability for a hypothesis when more evi-
dence or information becomes available. In this Bayes setting, the prior is
the estimated distribution of the previous state at time t − 1, the likelihood
correspond to the likelihood of getting the new data from the sensor given the
prior and finally, the posterior is the updated estimated distribution.

23

Model

The Kalman filter requires that both the model process and the mea-
surement process are linear gaussian. Linear gaussian processes are of the
form:

xt = f(xt−1) + wt

where f is a linear function and wt a gaussian process: it is sampled from an
arbitrary gaussian distribution.

The Kalman filter is a direct application of bayesian inference. It
combines the prediction of the distribution given the estimated prior state
and the state-transition model.

xt = Ftxt−1 + Btut + wt

• xt the state
• Ft the state transition model
• Bt the control-input model
• ut the control vector
• wt process noise drawn from wt ∼ N(0, Qk)

and the estimated distribution given the data coming from the sensors.

yt = Htxt + vt

• yt measurements
• Ht the state to measurement matrix
• wt measurement noise drawn from wt ∼ N(0, Rk)

Because, both the model process and the sensor process are assumed
to be linear Gaussian, we can combine them into a Gaussian distribution.
Indeed, the product of the distribution of two Gaussian forms a new Gaussian
distribution.

P (xt) ∝ P (x−
t |xt−1) · P (xt|yt)

N (xt) ∝ N (x−
t |xt−1) · N (xt|yt)

where x−
t is the predicted state from the previous state and the state-

transition model.

Kalman filter keeps track of the parameters of that gaussian: the mean
state and the covariance of the state which represents the uncertainty about
our last prediction. The mean of that distribution is also the best current
state estimation of the filter.

24

By keeping track of the uncertainty, we can optimally combine the
normals by knowing what importance to give to the difference between the
expected sensor data and the actual sensor data. That factor is the Kalman
gain.

• predict:
– predicted state: x̂−

t = Ftxt−1 + Btut

– predicted covariance: Σ−
t = Ft−1Σ−

t−1FT
t−1 + Qt

• update:
– predicted measurements: ẑ = Htx̂−

t

– innovation: (zt − ẑ)

– innovation covariance: S = HtΣ−
t HT

t + Rt

– optimal kalman gain: K = Σ−
t HT

t S−1

– updated state: Σt = Σ−
t + KSKT

– updated covariance: x̂t = x̂−
t + K(zt − ẑ)

Asynchronous Kalman Filter

It is not necessary to apply the full Kalman update at each measure-
ment. Indeed, H can be sliced to correspond to the measurements currently
available.

To be truly asynchronous, you also have to account for the different
sampling rates. There are two cases :

• The required data for the update step (the control inputs) can arrive mul-
tiple times before any of the data of the update step (the measurements)
occur.

• Inversely, it is possible that the measurements occur at a higher sampling
rate than the control inputs.

The strategy chosen here is as follows:

1. Multiple prediction steps without any update step may happen without
making the algorithm inconsistent.

2. An update is always immediately preceded by a prediction step. This
is a consequence of the requirement that the innovation must measure
the difference between the predicted measurement from the state at the
exact current time and the measurements. Thus, if the measurements
are not synchronized with the control inputs, use the most likely control
input for the prediction step. Repeating the last control input was the
method used for the accelerometer and the gyroscope data as control
input.

25

Extended Kalman Filters

In the previous section, we have shown that the Kalman Filter is only
applicable when both the process model and the measurement model are linear
Gaussian processes.

• The noise of the measurements and of the state-transition must be Gaus-
sian

• The state-transition function and the measurement to state function
must be linear.

Furthermore, it is provable that Kalman filters are optimal linear fil-
ters.

However, in our context, one component of the state, the attitude, is
intrinsically non-linear. Indeed, rotations and attitudes belong to SO(3) which
is not a vector space. Therefore, we cannot use vanilla Kalman filters. The
filters that we present thereafter relax those requirements.

One example of such extension is the extended Kalman filter (EKF)
that we will present here. The EKF relax the linearity requirement by using
differentiation to calculate an approximation of the first order of the functions
required to be linear. Our state transition function and measurement function
can now be expressed in the free forms f(xt) and h(xt) and we define the
matrix Ft and Ht as their Jacobian.

Ft10×10 = ∂f

∂x

∣∣∣∣
x̂t−1,ut−1

Ht7×7 = ∂h

∂x

∣∣∣∣
x̂t

• predict:
– predicted state: x̂−

t = f(xt−1) + Btut

– predicted covariance: Σ−
t = Ft−1Σ−

t−1FT
t−1 + Qt

• update:
– predicted measurements: ẑ = h(x̂−

t)
– innovation: (zt − ẑ)

– innovation covariance: S = HtΣ−
t HT

t + Rt

– optimal kalman gain: K = Σ−
t HT

t S−1

– updated state: Σt = Σ−
t + KSKT

– updated covariance: x̂t = x̂−
t + K(zt − ẑ)

26

EKF for POSE

State

For the EKF, we will use the following state:

xt = (vt, pt, qt)T

Initial state x0 at (0, 0, (1, 0, 0, 0))

Indoor Measurements model

1. Position:
pV(t) = p(t)(i) + pV

ϵ
t

where pV
ϵ
t ∼ N (0, RpVt

)
2. Attitude:

qV(t) = q(t)(i) ∗ R2Q(qV
ϵ
t)

where qV
ϵ
t ∼ N (0, RqVt

)

Kalman prediction

The model dynamic defines the following model, state-transition func-
tion f(x, u) and process noise w with covariance matrix Q

xt = f(xt−1, ut) + wt

f((v, p, q), (aA, ωG)) =

 v + ∆tRb2f {qt−1}a
p + ∆tv

q ∗ R2Q(∆tωG)

Now, we need to derive the jacobian of f . We will use sagemath to

retrieve the 28 relevant different partial derivatives of q.

Ft10×10 = ∂f

∂x

∣∣∣∣
x̂t−1,ut−1

x̂−(i)
t = f(x(i)

t−1, ut)

Σ−(i)
t = Ft−1Σ−(i)

t−1 FT
t−1 + Qt

27

Kalman measurements update

zt = h(xt) + vt

The measurement model defines h(x)

(
pV
qV

)
= h((v, p, q)) =

(
p
q

)

The only complex partial derivatives to calculate are the ones of the ac-
celeration, because they have to be rotated first. Once again, we use sagemath:
Ha is defined by the script in the appendix B.

Ht10×7 = ∂h

∂x

∣∣∣∣
x̂t

=

 03×3
I3×3

I4×4

Rt7×7 =
(

RpV

R′
qV 4×4

)

R′
qV has to be 4 × 4 and has to represent the covariance of the quater-

nion. However, the actual covariance matrix RqV is 3 × 3 and represent the
noise in terms of a rotation vector around the x, y, z axes.

We transform this rotation vector into a quaternion using our func-
tion R2Q. We can compute the new covariance matrix R′

qV using Unscented
Transform.

Unscented Transform

The unscented transform (UT) is a mathematical function used to esti-
mate statistics after applying a given nonlinear transformation to a probability
distribution. The idea is to use points that are representative of the original
distribution, sigma points. We apply the transformation to those sigma points
and calculate new statistics using the transformed sigma points. The sigma
points must have the same mean and covariance as the original distribution.

The minimal set of symmetric sigma points can be found using the
covariance of the initial distribution. The 2N + 1 minimal symmetric set of
sigma points are the mean and the set of points corresponding to the mean plus
and minus one of the direction corresponding to the covariance matrix. In one
dimension, the square root of the variance is enough. In N-dimensions, you

28

must use the Cholesky decomposition of the covariance matrix. The Cholesky
decomposition finds the matrix L such that Σ = LLt.

Figure 1.11: Unscented tranformation

Kalman update

S = HtΣ−
t HT

t + Rt

ẑ = h(x̂−
t)

K = Σ−
t HT

t S−1

Σt = Σ−
t + KSKT

x̂t = x̂−
t + K(zt − ẑ)

F partial derivatives

Q.<i,j,k> = QuaternionAlgebra(SR, -1, -1)

var('q0, q1, q2, q3')
var('dt')
var('wx, wy, wz')

q = q0 + q1*i + q2*j + q3*k

w = vector([wx, wy, wz])*dt
w_norm = sqrt(w[0]^2 + w[1]^2 + w[2]^2)
ang = w_norm/2
w_normalized = w/w_norm
sin2 = sin(ang)
qd = cos(ang) + w_normalized[0]*sin2*i + w_normalized[1]*sin2*j

+ w_normalized[2]*sin2*k

nq = q*qd

29

v = vector(nq.coefficient_tuple())

for sym in [wx, wy, wz, q0, q1, q2, q3]:
d = diff(v, sym)
exps = map(lambda x: x.canonicalize_radical().full_simplify(), d)
for i, e in enumerate(exps):

print(sym, i, e)

Unscented Kalman Filters

The EKF has three flaws in our case:

• The linearization gives an approximate form which result in approxima-
tion errors

• The prediction step of the EKF assumes that the linearized form of
the transformation can capture all the information needed to apply the
transformation to the gaussian distribution pre-transformation. Unfortu-
nately, this is only true near the region of the mean. The transformation
of the tail of the gaussian distribution may need to be very different.

• It attempts to define a Gaussian covariance matrix for the attitude
quaternion. This does not make sense because it does not account for
the requirement of the quaternion being in a 4 dimensional unit sphere.

The Unscented Kalman Filter (UKF) does not suffer from the two
first flaws, but it is more computationally expensive as it requires a Cholesky
factorisation that grows exponentially in complexity with the number of di-
mensions.

Indeed, the UKF applies an unscented transformation to sigma points
of the current approximated distribution. The statistics of the new approxi-
mated Gaussian are found through this unscented transform. The EKF lin-
earizes the transformation, the UKF approximates the resulting Gaussian after
the transformation. Hence, the UKF can take into account the effects of the
transformation away from the mean which might be drastically different.

The implementation of an UKF still suffers greatly from quaternions
not belonging to a vector space. The approach taken by [3] is to use the error
quaternion defined by ei = qiq̄. This approach has the advantage that similar
quaternion differences result in similar error. But apart from that, it does not
have any profound justification. We must compute a sound average weighted
quaternion of all sigma points. An algorithm is described in the following
section.

30

Average quaternion

Unfortunately, the average of quaternions components 1
N

∑
qi or

barycentric mean is unsound: Indeed, attitudes do not belong to a vector
space but a homogenous Riemannian manifold (the four dimensional unit
sphere). To convince yourself of the unsoundness of the barycentric mean,
see that the addition and barycentric mean of two unit quaternions is
not necessarily a unit quaternion ((1, 0, 0, 0) and (−1, 0, 0, 0) for instance.
Furthermore, angles being periodic, the barycentric mean of a quaternion
with angle −178◦ and another with same body-axis and angle 180◦ gives 1◦

instead of the expected −179◦.

To calculate the average quaternion, we use an algorithm which min-
imizes a metric that corresponds to the weighted attitude difference to the
average, namely the weighted sum of the squared Frobenius norms of attitude
matrix differences.

q̄ = arg min
q∈S3

∑
wi∥A(q) − A(qi)∥2

F

where S3 denotes the unit sphere.

The attitude matrix A(q) and its corresponding Frobenius norm have
been described in the quaternion section.

Intuition

The intuition of keeping track of multiple representatives of the dis-
tribution is exactly the approach taken by the particle filter. The particle
filter has the advantage that the distribution is never transformed back to a
gaussian so there are fewer assumptions made about the noise and the trans-
formation. It is only required to be able to calculate the expectation from a
weighted set of particles.

Particle Filter

Particle filters are computationally expensive. This is the reason why
their usage is not very popular currently for low-powered embedded systems
like drones. However, they are used in Avionics for planes since the compu-
tational resources are less scarce but precision crucial. Accelerating hardware
could widen the usage of particle filters to embedded systems.

Particle filters are sequential Monte Carlo methods. Like all Monte
Carlo methods, they rely on repeated sampling for estimation of a distribution.

31

Figure 1.12: Monte Carlo estimation of pi

32

The particle filter is itself a weighted particle representation of the
posterior:

p(x) =
∑

w(i)δ(x − x(i))

where δ is the dirac delta function. The dirac delta function is zero everywhere
except at zero, with an integral of one over the entire real line. It represents
here the ideal probability density of a particle.

Importance sampling

Weights are computed through importance sampling. With impor-
tance sampling, each particle does not equally represent the distribution. Im-
portance sampling enables us to use sampling from another distribution to
estimate properties from the target distribution of interest. In most cases,
it can be used to focus sampling on a specific region of the distribution. In
our case, by choosing the right importance distribution (the dynamics of the
model as we will see later), we can re-weight particles based on the likelihood
from the measurements (p(y|x).

Importance sampling is based on the identity:

E[g(x)|y1:T] =
∫

g(x)p(x|y1:T)dx

=
∫ [

g(x) p(x|y1:T)
π(x|y1:T)

]
π(x|y1:T)dx

Thus, it can be approximated as

E[g(x)|y1:T] ≈ 1
N

N∑
i

p(x(i)|y1:T)
π(x(i)|y1:T)

g(x(i)) ≈
N∑
i

w(i)g(x(i))

where N samples of x are drawn from the importance distribution
π(x|y1:T)

And the weights are defined as:

w(i) = 1
N

p(x(i)|y1:T)
π(x(i)|y1:T)

Computing p(x(i)|y1:T is hard (if not impossible), but fortunately we
can compute the unnormalized weight instead:

w(i)∗ = p(y1:T |x(i))p(x(i))π(x(i)|y1:T)

33

and normalizing it afterwards

N∑
i

w(i)∗ = 1 ⇒ w(i) = w∗(i)∑N
j w∗(i)

Sequential Importance Sampling

The last equation becomes more and more computationally expensive
as T grows larger (the joint variable of the time series grows larger). Fortu-
nately, Sequential Importance Sampling is an alternative recursive algorithm
that has a fixed amount of computation at each iteration:

p(x0:k|y0:k) ∝ p(yk|x0:k, y1:k−1)p(xk|y1:k−1)
∝ p(yk|xk)p(xk|x0:k−1, y1:k−1)p(x0:k−1|y1:k−1)
∝ p(yk|xk)p(xk|xk−1)p(x0:k−1|y1:k−1)

The importance distribution is such that xi
0:k ∼ π(x0:k|y1:k) with the

according importance weight:

w
(i)
k ∝

p(yk|x(i)
k)p(x(i)

k |x(i)
k−1)p(x(i)

0:k−1|y1:k−1)
π(x0:k|y1:k)

We can express the importance distribution recursively:

π(x0:k|y1:k) = π(xk|x0:k−1, y1:k)π(x0:k−1|y1:k−1)

The recursive structure propagates to the weight itself:

w
(i)
k ∝

p(yk|x(i)
k)p(x(i)

k |x(i)
k−1)

π(xk|x0:k−1, y1:k)
p(x(i)

0:k−1|y1:k−1)
π(x0:k−1|y1:k−1)

∝
p(yk|x(i)

k)p(x(i)
k |x(i)

k−1)
π(xk|x0:k−1, y1:k)

w
(i)
k−1

We can further simplify the formula by choosing the importance dis-
tribution to be the dynamics of the model:

π(xk|x0:k−1, y1:k) = p(x(i)
k |x(i)

k−1)

w
∗(i)
k = p(yk|x(i)

k)w(i)
k−1

As previously, it is then only needed to normalize the resulting weight.

34

N∑
i

w(i)∗ = 1 ⇒ w(i) = w∗(i)∑N
j w∗(i)

Resampling

When the number of effective particles is too low (less than 1/10 of
N having weight 1/10), we apply systematic resampling. The idea behind
resampling is simple. The distribution is represented by a number of particles
with different weights. As time goes on, the repartition of weights degenerates.
A large subset of particles end up having negligible weight which make them
irrelevant and only a few particles represent most of the distribution. In the
most extreme case, one particle represents the whole distribution.

To avoid that degeneration, when the weights are too unbalanced, we
resample from the weights distribution: pick N times among the particle and
assign them a weight of 1/N , each pick has odd wi to pick the particle pi.
Thus, some particles with large weights are split up into smaller clone particle
and others with small weights are never picked. This process is remotely
similar to evolution: at each generation, the most promising branch survives
and replicate while the less promising dies off.

A popular method for resampling is systematic sampling as described
by [4]:

Sample U1 ∼ U [0, 1
N] and define Ui = U1 + i−1

N for i = 2, . . . , N

Rao-Blackwellized Particle Filter

Introduction

Compared to a plain particle filter, RBPF leverages the linearity of
some components of the state by assuming our model to be Gaussian condi-
tioned on a latent variable: Given the attitude qt, our model is linear. This is
where RBPF shines: We use particle filtering to estimate our latent variable,
the attitude, and we use the optimal kalman filter to estimate the state vari-
able. If a plain particle can be seen as the simple average of particle states,
then the RBPF can be seen as the “average” of many Gaussians. Each particle
is an optimal kalman filter conditioned on the particle’s latent variable, the
attitude.

Indeed, the advantage of particle filters is that they assume no particu-
lar form for the posterior distribution and transformation of the state. But as
the state widens in dimensions, the number of needed particles to keep a good

35

estimation grows exponentially. This is a consequence of [“the curse of di-
mensionality”}(https://en.wikipedia.org/wiki/Curse_of_dimensionality): for
each dimension, we would have to consider all additional combination of state
components. In our context, we have 10 dimensions (v,p,q), which is already
large, and it would be computationally expensive to simulate a too large num-
ber of particles.

Kalman filters on the other hand do not suffer from such exponential
growth, but as explained previously, they are inadequate for non-linear trans-
formations. RBPF is the best of both worlds by combining a particle filter for
the non-linear components of the state (the attitude) as a latent variable, and
Kalman filters for the linear components of the state (velocity and position).
For ease of notation, the linear component of the state will be referred to as
the state and designated by x even though the actual state we are concerned
with should include the latent variable θ.

Related work

Related work of this approach is [5]. However, it differs by:

• adapting the filter to drones by taking into account that the system is too
dynamic for assuming that the accelerometer simply output the gravity
vector. This is solved by augmenting the state with the acceleration as
shown later.

• add an attitude sensor.

Latent variable

We introduce the latent variable θ

The latent variable θ has for sole component the attitude:

θ = (q)

qt is estimated from the product of the attitude of all particles θ(i) =
q(i)

t as the “average” quaternion qt = avgQuat(qn
t). xn designates the product

of all n arbitrary particle.

As stated in the previous section, The weight definition is:

w
(i)
t = p(θ(i)

0:t|y1:t)
π(θ(i)

0:t|y1:t)

From the definition and the previous section, it is provable that:

36

w
(i)
t ∝

p(yt|θ(i)
0:t−1, y1:t−1)p(θ(i)

t |θ(i)
t−1)

π(θ(i)
t |θ(i)

1:t−1, y1:t)
w

(i)
t−1

We choose the dynamics of the model as the importance distribution:

π(θ(i)
t |θ(i)

1:t−1, y1:t) = p(θ(i)
t |θ(i)

t−1)

Hence,

w
∗(i)
t ∝ p(yt|θ(i)

0:t−1, y1:t−1)w(i)
t−1

We then sum all w
∗(i)
t to find the normalization constant and retrieve

the actual w
(i)
t

State

xt = (vt, pt)T

Initial state x0 = (0, 0, 0)

Initial covariance matrix Σ6×6 = ϵI6×6

Latent variable

q(i)
t+1 = q(i)

t ∗ R2Q(∆t(ωGt + ωG
ϵ
t))

ωG
ϵ
t represents the error from the control input and is sampled from

ωG
ϵ
t ∼ N (0, RωGt

)

Initial attitude q0 is sampled such that the drone pitch and roll are
none (parallel to the ground) but the yaw is unknown and uniformly dis-
tributed.

Note that q(t + 1) is known in the model dynamic because the model
is conditioned under θ

(i)
t+1.

37

Indoor Measurement model

1. Position:
pV(t) = p(t)(i) + pV

ϵ
t

where pV
ϵ
t ∼ N (0, RpVt

)
2. Attitude:

qV(t) = q(t)(i) ∗ R2Q(qV
ϵ
t)

where qV
ϵ
t ∼ N (0, RqVt

)

Kalman prediction

The model dynamics define the following model, state-transition ma-
trix Ft{θ

(i)
t }, the control-input matrix Bt{θ

(i)
t }, the process noise wt{θ

(i)
t } for

the Kalman filter and its covariance Qt{θ
(i)
t }

xt = Ft{θ
(i)
t }xt−1 + Bt{θ

(i)
t }ut + wt{θ

(i)
t }

Ft{θ
(i)
t }6×6 =

(
I3×3 0

∆t I3×3 I3×3

)

Bt{θ
(i)
t }6×3 =

(
Rb2f {q(i)

t }aA
03×3

)

Qt{θ
(i)
t }6×6 =

(
Rb2f {q(i)

t }(Qat ∗ dt2)Rt
b2f {q(i)

t }
Qvt

)

x̂−(i)
t = Ft{θ

(i)
t }x(i)

t−1 + Bt{θ
(i)
t }ut

Σ−(i)
t = Ft{θ

(i)
t }Σ−(i)

t−1 (Ft{θ
(i)
t })T + Qt{θ

(i)
t }

Kalman measurement update

The measurement model defines how to compute p(yt|θ(i)
0:t−1, y1:t−K1)

Indeed, The measurement model defines the observation matrix
Ht{θ

(i)
t }, the observation noise vt{θ

(i)
t } and its covariance matrix Rt{θ

(i)
t }

for the Kalman filter.

38

(aAt, pVt)T = Ht{θ
(i)
t }(vt, pt)T + vt{θ

(i)
t }

Ht{θ
(i)
t }6×3 =

(
03×3

I3×3

)

Rt{θ
(i)
t }3×3 =

(
RpVt

)

Kalman update

S = Ht{θ
(i)
t }Σ−(i)

t (Ht{θ
(i)
t })T + Rt{θ

(i)
t }

ẑ = Ht{θ
(i)
t }x̂−(i)

t

K = Σ−(i)
t Ht{θ

(i)
t }T S−1

Σ(i)
t = Σ−(i)

t + KSKT

x̂(i)
t = x̂−(i)

t + K((aAt, pVt)T − ẑ)

p(yt|θ(i)
0:t−1, y1:t−1) = N ((aAt, pVt)T ; ẑt, S)

Asynchronous measurements

Our measurements might have different sampling rate so instead of do-
ing full kalman update, we only apply a partial kalman update corresponding
to the current type of measurement zt.

For indoor drones, there is only one kind of sensor for the Kalman
update: pV

Attitude re-weighting

In the measurement model, the attitude defines another re-weighting
for importance sampling.

p(yt|θ(i)
0:t−1, y1:t−1) = N (Q2R(q(i)−1qVt); 0, RqV)

39

Algorithm summary

1. Initiate N particles with x0, q0 ∼ p(q0), Σ0 and w = 1/N
2. While new sensor measurements (zt, ut)

• foreach N particles (i):
1. Depending on the type of observation:

– IMU:
1. store ωGt and aAt as last control inputs
2. sample new latent variable θt from ωGt (which correspond

to the last control inputs)
3. apply kalman prediction from aAt (which correspond to

the last control inputs)
– Vicon:

1. sample new latent variable θt from ωGt (which correspond
to the last control inputs)

2. apply kalman prediction from aAt (which correspond to
the last control inputs)

3. Partial kalman update with:

Ht{θ
(i)
t }3×6 = (03×3 I3×3)

Rt{θ
(i)
t }3×3 = RpVt

x(i)
t = Ht{θ

(i)
t }x(i)

t−1 + K(pVt − ẑ)

p(yt|θ(i)
0:t−1, y1:t−1) = N (qVt; q(i)

t , RqVt
)N (pVt; ẑt, S)

– Other sensors (Outdoor): As for Vicon but use the corre-
sponding partial Kalman update

2. Update w
(i)
t : w

(i)
t = p(yt|θ(i)

0:t−1, y1:t−1)w(i)
t−1

• Normalize all w(i) by scalaing by 1/(
∑

w(i)) such that ∑w(i) = 1
• Compute pt and qt as the expectation from the distribution approxi-

mated by the N particles.
• Resample if the number of effective particle is too low

Extension to outdoors

As highlighted in the Algorithm summary, the RBPF if easily extensi-
ble to other sensors. Indeed, measurements are either:

• giving information about position or velocity and their update is similar
to the vicon position update as a kalman partial update

• giving information about the orientation and their update is similar to
the vicon attitude update as a pure importance sampling re-weighting.

40

A proof-of-concept alternative Rao-blackwellized particle filter special-
ized for outdoor use has been developed that integrates the following sensors:

• IMU with accelerometer, gyroscope and magnetometer
• Altimeter
• Dual GPS (2 GPS)
• Optical Flow

The optical flow measurements are assumed to be of the form (∆p, ∆q)
for a ∆t corresponding to its sampling rate. It is inputed to the particle filter
as a likelihood:

p(yt|θ(i)
0:t−1, y1:t−1) = N (pt1 + ∆p; pt2; RdpOt

)N (∆q; q−1
t1 qt2; RdqOt

)

where t2 = t1 + ∆t, pt2 is the latest kalman prediction and qt2 is the
latest latent variable through sampling of the attitude updates.

Results

We present a comparison of the 4 filters in 6 settings. The metrics
is the RMSE of the l2-norm of the position and of the Froebius norm of the
attitude as described previously. All the filters share a sampling frequency
of 200Hz for the IMU and 4Hz for the Vicon. The RBPF is set to 1000
particles

In all scenarios, the covariance matrices of the sensors’ measurements
are diagonal:

• RaA = σ2
aAI3×3

• RωG = σ2
ωGI3×3

• RpV = σ2
pVI3×3

• RqV = σ2
qVI3×3

with the following settings:

• Vicon:
– High-precision σ2

pV = σ2
qV = 0.01

– Low-precision σ2
pV = σ2

qV = 0.1

• Accelerometer:
– High-precision: σ2

aA = 0.1
– Low-precision: σ2

aA = 1.0
• Gyroscope:

– High-precision: σ2
ωG = 0.1

– Low-precision: σ2
ωG = 1.0

41

Table 1.1: position RMSE over 5 random trajectories of 20
seconds

Vicon
preci
sion

Accel.
preci.

Gyros.
preci.

Augmented
Complemen-
tary
Filter

Extended
Kalman
Filter

Unscented
Kalman
Filter

Rao -
Blackwellized
Particle
Filter

High High High 6.88e-02 3.26e-02 3.45e-02 1.45e-02
High High Low 6.10e-02 1.13e-01 9.20e-02 2.17e-02
High Low Low 4.05e-02 5.24e-02 3.29e-02 1.61e-02
Low High High 5.05e-01 5.05e-01 2.90e-01 1.27e-01
Low High Low 6.16e-01 1.09e+00 9.30e-01 1.22e-01
Low Low Low 3.57e-01 2.66e-01 3.27e-01 1.19e-01

Table 1.2: attitude RMSE over 5 random trajectories of 20
seconds

Vicon
preci
sion

Accel.
preci.

Gyros.
preci.

Augmented
Complemen-
tary
Filter

Extended
Kalman
Filter

Unscented
Kalman
Filter

Rao -
Blackwellized
Particle
Filter

High High High 7.36e-03 5.86e-03 5.17e-03 1.01e-04
High High Low 6.37e-03 1.37e-02 9.17e-03 6.50e-04
High Low Low 6.25e-03 1.69e-02 1.02e-02 8.34e-04
Low High High 5.30e-01 3.28e-01 3.26e-01 5.82e-03
Low High Low 5.18e-01 2.99e-01 2.95e-01 5.78e-03
Low Low Low 5.90e-01 3.28e-01 3.24e-01 3.97e-03

Figure 1.13 is a bar plot of the first line of each table.

Figure 1.14 is the plot of the tracking of the position (x, y, z) and
attitute (r, i, j, k) in the low vicon precision, low accelerometer precision and
low gyroscope precision setting for one of random trajectory.

Conclusion

The Rao-Blackwellized Particle Filter developed is more accurate than
the alternatives, mathematically sound and computationally feasible. When
implemented on hardware, this filter can be executed in real time with sensors
of high and asynchronous sampling rate. It could improve POSE estimation
for all the existing drone and other robots. These improvements could unlock
new abilities, potentials and increase the safeness of drone.

42

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

Position

ACF
EKF
UKF

RBPF

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

Attitude

ACF
EKF
UKF

RBPF

Figure 1.13: Bar plot in the High/High/High setting

43

Figure 1.14: Plot of the tracking of the different filters

44

2 | A simulation tool for
data flows with Spatial
integration: scala-flow

Purpose

Data flows are intuitive visual representations and abstractions of com-
putation. As all forms of representations and abstractions, they ease complex-
ity management, and let engineers reason at a higher level. They are common
in the context of embedded systems, where sensors and electronic circuits
have natural visual representations. They are also used in most forms of data
processing, in particular those related to so called big data.

Spark and Simulink are popular libraries for data processing and em-
bedded systems, respectively. Spark grew popular as an alternative to Hadoop.
The advantages of Spark over Hadoop was, among others, in-memory com-
munication between nodes (as opposed to through files) and a functionally
inspired scala api that brought better abstractions and reduced the number
of lines of code. Less boilerplate and duplication of code improve abstraction
and ease prototyping thanks to faster iteration.

Simulink by MathWorks on the other hand, is a graphical program-
ming environment for modeling, simulating and analyzing dynamic systems,
including embedded systems. Its primary interface is a graphical block dia-
gramming tool and a customizable set of block libraries.

scala-flow is inspired by both of these tools. It is general purpose in
the sense that it can be used to represent any dynamic systems. Neverthe-
less, its primary intended use is to develop, prototype, and debug embedded
systems, and in particular those that make use of spatially programmed hard-
ware. scala-flow has a functional/composable api, displays the constructed
graph and provides block constructions. It has strong type safety: the type
of the input and output of each node is checked during compilation time to

45

Figure 2.1: An example of the simulink interface

ensure the soundness of the resulting graph.

Source, Sink and Transformations

Data are passed from nodes to nodes under the form of typed “packets”
containing a value of the given type, an emission timestamp, and the delays
the packet has encountered during its processing through the different nodes
of the graph.

case class Timestamped[A](t: Time, v: A, dt: Time)

They are called Timestamped because they represent values and their
corresponding timestamp information.

Packets get emitted from Source0[T] (nodes with no input), pro-
cessed and transformed by other nodes until they reach sinks (nodes with no
output). Nodes are connected between each other according to the structure
of the data flow.

Nodes all mix-in the common trait Node. Every emitting Node (all
nodes except sinks) mix-in the trait Source[A] whose type parameter A
indicates the type of the packets emitted by this node. Indeed, nodes can only
have one output but they can have any number of inputs. Every node also
mixes-in the trait SourceX[A, B, [...كك where X is the number of inputs
for that node and is replaced by the actual arity (1, 2, 3, …). This is similar
to FunctionX[A, B, ,...كك R], the type of functions in scala.

• Source0 indicates that the node takes exactly 0 input.

46

• Source1[A] indicates that the node has 1 input whose packets are of
type A.

• Source2[A,B] indicates that the nodes has 2 inputs whose packets are
respectively of type A and B

• etc …

Since all nodes mix-in a SourceX, the compiler can check that the
inputs of each node are of the right type.

All SourceX must define def listenI(x: A) where I goes from
1 to X and A correspond to the corresponding type parameter of SourceX.
def listenI(x: A) defines the action to take whenever a packet is received
from the input I. Those functions are callbacks used to pass packets to the
nodes following a listener pattern.

There is a special case, SourceN[A, R] which represent nodes that
have an *-arity of type A and emit packets of type R. For instance, the Plot
nodes take * number of sources and display them all on the same plot. The
only constraint is that all the source nodes must emit the same kind of data
of type A. Otherwise, it would not make sense to compare them. For plots
specifically, A also has a context bound of Data which means that there exists
a conversion from A to a Seq[Float], to ensure that A is displayable in a
multiplot as time series. The x-axis, the time, correspond to the timestamp
of emission contained in the packet.

An intermediary node that applies a transformation mixs-in the trait
OpX[A, B, ,...كك R] where A, B is the type of the input, and R is the type
of the output.

OpX[A, B, ,...كك R] extends SourceX[A, B, [...كك with Source[R].

For instance, zip(sourceA, sourceB) is an Op[A, B, (A, B)].
In most cases, Ops are a transformation of an incoming packet followed by a
broadcasting (with the function def broadcast(x: R)) to the nodes that
have for source this node.

Demo

Below is the scala-flow code corresponding to a data-flow comparing a
particle filter, an extended kalman filter, and the true state of the underlying
model, the trajectory of the drone. At each tick of the different clocks, a
packet containing the time as value is sent to a node simulating a sensor.
Those sensors have access to the underlying model and transform the time
into noisy sensor measurements, then forward them to the two filters. Once
processed by the filters, the packets are plotted by the Plot sink. The plot
also take as input the true state as given by the “toPoints” transformation.

47

******//ق Model ******
val dtIMU = 0.01
val dtVicon = (dtIMU * 5)

val covAcc = 1.0
val covGyro = 1.0
val covViconP = 0.1
val covViconQ = 0.1

val numberParticles = 1200

val clockIMU = new TrajectoryClock(dtIMU)
val clockVicon = new TrajectoryClock(dtVicon)

val imu = clockIMU.map(IMU(eye(3) * covAcc, eye(3) * covGyro, dtIMU))
val vicon = clockVicon.map(Vicon(eye(3) * covViconP, eye(3) * covViconQ))

lazy val pfilter =
ParticleFilterVicon(

imu,
vicon,
numberParticles,
covAcc,
covGyro,
covViconP,
covViconQ

)

lazy val ekfilter =
EKFVicon(

imu,
vicon,
covAcc,
covGyro,
covViconP,
covViconQ

)

val filters = List(ekfilter, pfilter)

val points = clockIMU.map(LambdaWithModel(
(t: Time, traj: Trajectory) ׆ك traj.getPoint(t)), "toPoints")

val pqs = points.map(x ׆ك (x.p, x.q), "toPandQ")

Plot(pqs, filters:_*)

Figure 2.2: Example of a scala-flow program

48

┌────────────────────┐ ┌────────────────────┐
│TrajectoryClock 0.01│ │TrajectoryClock 0.05│
└─────┬────────────┬─┘ └────────┬───────────┘

│ │ │
v v v

┌───────┐ ┌────────┐ ┌─────────┐
│Map IMU│ │toPoints│ │Map Vicon│
└──┬──┬─┘ └────┬───┘ └───┬──┬──┘

│ │ │ │ │
│ │ │ ┌──────┘ │
│ └──────────┼────┼─────────┼┐
└───────────┐ │ │ ││
┌────────────┼─┘ │ ││
│ │ │ ││
v v v vv

┌───────┐ ┌───────────────────┐ ┌────────┐
│toPandQ│ │ RBPFVicon │ │EKFVicon│
└───┬───┘ └──────────┬────────┘ └────┬───┘

│ │ │
└──────────────┐ │ ┌─────────────┘

│ │ │
v v v

┌───────┐
│ Plot │
└───────┘

Figure 2.3: Graph representation of the data-flow

Block

A block is a node representing a group of nodes. That node can be
summarized by its input and output such that from an external perspective, it
can be considered as a simple node. Similar to the way an interface or an API
hide its implementation details, a block hides its inner workings to the rest of
the data-flow as long as the block receives and emits the right type of packets.
This logic extends to the graphical representation. Blocks are represented as
nodes in the high-level graph but expanded in an independent graph below
the main one.

Similar to OpX[A, B, ,...كك R] , there exists BlockX[A, B, ,...كك R]

49

which all extend Block[R] and take X sources as input. All Block[R]
must define an out method of the form: def out: Source[R].

For instance, the filters are blocks with the following signatures:

case class RBPFVicon(rawSource1: Source[(Acceleration, Omega)],
rawSource2: Source[(Position, Attitude)],
N: Int,
covAcc: Real,
covGyro: Real,
covViconP: Real,
covViconQ: Real)

extends Block2[(Acceleration, Omega),
(Position, Attitude),
(Position, Attitude)] {

def imu = source1
def vicon = source2

def out = ...كك
}

Figure 2.4: Signature of the block of the particle filter

and similar for EKFVicon.

The careful reader might notice that the above block takes as
arguments rawSourceI and not sourceI directly. However, the pack-
ets are processing in the body of the class as incoming from sourceI
(def imu = source1). This is a consequence of intermediary Source
potentially needing to be generated during the graph creation to synchronize
multiple scheduler together. More details below.

Graph construction

A graph can be entirely re-evaluated multiple times. For instance, we
might want to run our simulation more than once. A feature of scala-flow is
that the nodes of a graph are immutable and can be reused between different
evaluations. This enables us to serialize, store or transfer a graph easily. A
graph is a data structure and scala-flow follows that intuition by separating
the construction of graph and its evaluations. What is specific and shortlived
for the lapse of time of an evaluation of a graph are the Channels between
the different nodes.

Channel

Channels are specific to a particular node and a particular “channel”
of a node. A “channel” here refers to the actual I from listenI(packet)

50

of a node to call. When the graph is initialized, the channels are created
according to the graph structure.

If we take a look at Channel2 for instance:

sealed trait Channel[A] {
def push(x: Timestamped[A], dt: Time): Unit

}

...كك

case class Channel2[A](receiver: Source2[_, A], scheduler: Scheduler)
extends Channel[A] {

def push(x: Timestamped[A], dt: Time = 0) =
...كك

}

We see that it requires that the receiver is a Source2. This actu-
ally means that the receiver must have at least (and not exactly) 2 sources.
This is a consequence ofSourceI+1 extending SourceI, the base case being
Source0: trait Source2[A, B] extends Source1[A].

Now, if we look at the private method broadcast inside Source[T]

def broadcast(x: ׆ك Timestamped[A], t: Time = 0) =
if (!closed)
channels.foreach(_.push(x, t))

We see that broadcast is simply pushing elements into all its private
channels. The channels are set during initialization of the graph in a simple
manner: The graph is traversed and for all node the corresponding channel
are created for its corresponding sources.

Buffer and cycles

It is possible to create cycles inside data-flows at the express condition
that the immediate node creating a cycle is exclusively a kind of node called
Buffer. Buffers relay to the next node any incoming data but with the
particularity of a buffering of one packet. Buffers are created with an initial
value. When the first packet arrives, the Buffer stores the incoming packet
and broadcast the initial value. When another following packet arrives, the
buffer stores the new packet and broadcast the previously stored one and so
on.

Even using buffer nodes, declaring cycle requires additional steps:

51

val source: Source[A] = ...كك
val buffer = Buffer(merge, initA)
val zipped = source.zip(buffer)

This will not be valid scala because there is a circular dependency
between buffer and zipped. Indeed, instantiating buffer require to instan-
tiate zipped, which require to instantiate buffer … A solution is to use
lazy val.

val source: Source[A] = ...كك
lazy val buffer = Buffer(merge, initA)
lazy val zipped = source.zip(buffer)

lazy val a = e in scala implements lazy evaluation, meaning the
expression e is not evaluated until it is needed. In our case, this makes sure
that both buffer and zipped can be declared and instantiated. It is enough
that their parameters are declared of the right type, they do not actually need
to evaluated. At the initialization of the entire graph, there is no circular
dependency either because both instances exist and will only be used during
the evaluation of the graph.

Source API

Here is a simplified description of the API of each source.

When relevant, the functions have an alternative methodNameT func-
tion that takes themselves function whose domain is Timestamped[A] in-
stead of A.

For instance, there is a

def foreachT(f: Timestamped[A] ׆ك Unit): Source[A]

which is equivalent to the foreach below except it can access the
additional fields t and dt in Timestamped

trait Source[A] {

/** return a new source that map every incoming packet by the function f
* such that new packets are Timestamped[B]
/*ق

def map[B](f: A ׆ك B): Source[B]

/** return a filtered source that only broadcast
* the elements that satisfy the predicate b /*ق

def filter(b: A ׆ك Boolean): Source[A]

/** return this source and apply the function f to each

52

* incoming packets as soon as they are received
/*ق

def foreach(f: A ׆ك Unit): Source[A]

/** return a new source that broadcast elements
* until the first time the predicate b is not satisfied
/*ق

def takeWhile(b: A ׆ك Boolean): Source[A]

/** return a new source that accumulate As into a List[A]
* then broadcast it when the next packet from the other
* source clock is received
/*ق

def accumulate(clock: Source[Time]): Source[ListT[A]]

/** return a new source that broadcast all element inside the collection
* returned by the application of f to all incoming packet
/*ق

def flatMap[C](f: A ׆ك List[C]): Source[C]

/** assumes that A is a List[Timestamped[B]].
* returns a new source that apply the reduce function
* over the collection contained in every incoming packet /*ق

def reduce[B](default: B, f: (B, B) ׆ك B)
(implicit ev: A <:< ListT[B]): Source[B]

/** return a new source that broadcast pair of the packet from this source
* and the source provided as argument. Wait until a packet is received
* from both source. Packets from both source are queued such
* that independant of the order, they are never discarded
* A2 B1 A3 B2 B3 B4 B5 A4ق=> (A1, B1), (A2, B2), (A3, B3), (A4, B4),
* [Queue[B5]]
/*ق

def zip[B](s2: Source[B]): Source[Boolean]

/** return a new source that broadcast pair of the packet from this source
* and the source provided as argument. Similar to zip except that
* if multiple packets from the source provided as argument is received
* before, all except the last get discarded.
* A2 B1 A3 B2 B3 B4 B5 A4ق=> (A1, B1), (A2, B2), (A3, B3), (A4, B4),
* [Queue[B5]]
/*ق

def zipLastRight[B](s2: Source[B])

/** return a new source that broadcast pair of the packet from this source
* and the source provided as argument. Similar to zip except that all
* packet except the last get discarded when both source are not in sync.
* A1 A2 B1 A3 B2 B3 A4ق=> (A1, B1), (A3, B2), (B3, A4)
/*ق

def zipLast[B](s2: Source[B])

/** return a new source that combine this source and the provided source .
* packets from this source are Left
* packets from the other source are Right
/*ق

def merge[B](s2: Source[B]): Source[Either[A, B]]

/** return a new source that fuse this source and the provided source
* as long they have the same type.
* any outgoing packet is indistinguishable of origin
/*ق

def fusion(sources: Source[A]*): Source[A]

/** "label" every packet by the group returned by f /*ق
def groupBy[B](f: A ׆ك B): Source[(B, A)]

53

/** print every incoming packet /*ق
def debug(): Source[A]

/** return a new source that buffer 1 element and
* broadcast the buffered element with the time of the incoming A
/*ق

def bufferWithTime(init: A): Source[A]

/** return a new source that do NOT broadcast any element /*ق
def muted: Source[A]

/** return a new source that broadcast one incoming packet every
* n incoming packet.
* The first broadcasted packet is the nth received one
/*ق

def divider(n: Int): Source[A]

/** return a pair of source from a source of pair /*ق
def unzip2[B, C](implicit ev: A <:< (B, C)): (Source[B], Source[C])

/** return a new source whose every outgoing packet have an added dt
* in their delay component
/*ق

def latency(dt: Time): Source[A]

/** return a new source whose broadcasted packets contain the time of
* emission
/*ق

def toTime: Source[Time]

/** return a new source that do NOT broadcast the first n packets /*ق
def drop(n: Int): Source[A]

}

implicit class TimeSource(source: Source[Time]) {

/** stop the broadcasting after the timeframe tf has elapsed /*ق
def stop(tf: Timeframe): Source[Time]

/** add a random delay following a gaussian with corresponding
* mean and variance /*ق

def latencyVariance(mean: Real, variance: Real): Source[Time]

/** add a delay of dt /*ق
def latency(dt: Time): Source[Time]

/** return a new source of the difference of time between
* the two last emitted packets /*ق

def deltaTime(init: Time = 0.0): Source[Time]

}

Figure 2.5: API of the Sources

The real API also includes name and silent parameters. Both are
only relevant for the graphical representation. The name of the block will be
overriden by name if present and the node will be skipped in the graphical
representation if silent is present.

54

Batteries

The following nodes are already included and pre-defined:

• Clock: Source0[Time] that takes as parameter a timeframe dt
which corresponds to the lapse of time between each emission of packets.
The packets contain as values the time of emission.

• TestTS: “Test Time Series” Sink that takes a source of labeled data.
Labeled data are data joined with their corresponding label. This sink
displays the mean error, the max error error across all datapoints and
also the RMSE.

[info ParticleFi] RMSE : 1.099241e-01, 4.213478e-03
[info ParticleFi] Mean errors: 3.026816e-01, 4.746430e-02
[info ParticleFi] Max errors: 7.086643e-01, 2.386466e-01

• Plot: Sink that displays the time series under the form of a plot. Can
take an arbitrary number of time series, each of arbitrary dimension.
In the example below, 5 time series of 2 dimensions are plotted. The
plotting library is the one included in scala-breeze, used elsewhere for
matrix and vector operations.

Series 0 Series 1 Series 2 Series 3

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

t ime

0

p

Series 0 Series 1 Series 2 Series 3

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

t ime

0

q

Figure 2.6: Example of a plot generated by the Plot sink

• Jzy3dTrajectoryVisualisation: Sink. It displays a point follow-
ing a trajectory in a new window. takes a source of points as source. An
example as shown in Part I.

In addition, any scala.Stream[A] can be transformed into a
Source0 node using EmitterStream[A] with A being the type of the
Stream. This is how Clock is implemented, as an infinite scala stream of
Time.

55

https://github.com/scalanlp/breeze

Figure 2.7: Example of a trajectory visualization

Batch

A batch is a node that processes its inputs in “batch” mode. All the
other nodes process their inputs in “stream” mode. By “stream” mode, it is
meant that the node processes the inputs one-by-one, as soon as they arrive.
On the other hand, the “batch” mode means that the node processes the
incoming packets once they have all arrived, once and for all. This is the case
for most sinks (for example, it makes more sense for a plot to build it once all
the data is arrived).

Spatial is a language described in part IV and developed to write high-
level hardware design of accelerators. A spatial application can be integrated
into scala-flow as a transformation node using the streaming interface of Spa-
tial. Spatial applications can only run during the same runtime than scala-
flow using the interpreter described in Part III and originally developed for
this exact purpose. Batches are essential to Spatial integration: the nodes
that simulate a Spatial application can only run and treat all the data at
once. Indeed, running a Spatial application involves running the Spatial com-
piler in the background and compiling the full meta-program, including all
meta-constant values.

56

Scheduler

Scheduling is the core mechanism of scala-flow. Scheduling ensures
that packets get emitted by the sending nodes and received by the recipient
nodes at the “right time”. Since scala-flow is a simulation tool, the “scala-flow
time” does not correspond at all to the real time. Scheduling emits the packets
as fast as it can. Therefore, since time is an arbitrary component of the packet,
the only constraint that scheduling must satisfy is emitting the packets from
all nodes in the right order.

Scheduling is achieved by one or many Schedulers. Schedulers are
essentially priority queues of actions. The priority is the timestamp plus the
accumulated delay of the packet. The actions are side-effect functions that
emit packets to the right node by the intermediary of channels. Every node
has a scheduler and enqueue action to it every time the broadcast method
is called. The scheduler are propagated through the graph through two rules:

• Every Source0 has for Scheduler the “main scheduler” available glob-
ally passed on as an implicit parameter

• Other nodes either explicitly create their own scheduler (like the batch
nodes) or use the Scheduler from their source1 input.

Only one scheduler executes actions at the same time. When a
scheduler is finished, another one is started unless it was the last one.
In practice, when a scheduler has no more packets to handle, there is
a callback to CloseListener nodes and scheduler according to their
CloseListener priority. Batches have their own scheduler and are also
among CloseListener of the Scheduler of their source node, waiting for
them to all finish. Batches process the accumulated packets as soon as the
CloseListener callback is called.

All schedulers start at time 0. The current time of a scheduler is
the time of the last emitted packet. Scheduler can en-queue new actions
while the scheduler is “live” but the en-queued packet can only have a time of
emission greater or equal to the current time. In the trivial case where there
is no Batch, only one scheduler is needed.

Replay

Replay are nodes at the frontier of two schedulers. They accumu-
late packets from the actions of the first scheduler until they receive its
CloseListener callback. When received, they en-queue all the accumulated
actions into the second scheduler. Replays are the primary mechanisms of
synchronization between two Schedulers. A Batch is essentially a Replay
with its own Scheduler as secondary Scheduler. However, a batch trans-

57

forms the data before broadcasting instead of simply replaying it.

All sources of a node must share the same scheduler. Replays
are automatically inserted to ensure that this rule is respected

The automatic insertion is the reason why nodes must define all
rawSourceI but one should only externally ever use the sourceI methods.
In most case, rawSourceI and sourceI are by definition the same. How-
ever, if a replay node has to be created, it is inserted in-between rawSourceI
and sourceI.

Multi-Scheduler graph

When the graph involves multiple schedulers, depending on the graph
structure, the synchronization between them might require additional replays.

scheduler2scheduler	1

Node ...

sourceA

sourceB

sourceC

Figure 2.8: Node’s sources sharing the same Scheduler

In the above structure, no replay need to be created because all sources
of the node “Node” share the same scheduler. It suffices to wait for the closing
callback of that scheduler.

In the above structure, intermediary replays must be created so that

58

scheduler	4

scheduler	3

scheduler	2

scheduler	1

Node ...

sourceC

sourceB

sourceA

Figure 2.9: Node’s sources not sharing the same Scheduler

59

the node “Node” sources share the same scheduler.

scheduler	5scheduler	4

scheduler	3

scheduler	2

scheduler	1

Node ...

Replay1

Replay2

Replay3sourceC

sourceB

sourceA

Figure 2.10: Example of Replays between inserted in-between a Node and its
sources

InitHook

Some nodes need initialization values for each simulation evaluation.
For instance, this is the case for the trajectory filters: the filters require to
be given the initial position and attitude of the drone. An InitHook[I] is
an implicit parameter passed to the nodes during their declaration. The type
parameter I is the type of the values that will be accessible by the nodes as
initialization values.

ModelHook

Similarly, some nodes need access to a “Model”. A “Model” is specific
to a simulation and is an oracle that a node might need to consult in order
to generate data or get any other information about the external simulation
environment. For instance, the sensor nodes generate noisy measurements
as a function of the time based on the underlying trajectory model. Similar
to InitHook[I], it is passed to nodes during the graph declaration as an
implicit parameter.

60

NodeHook

To gather the nodes and their connection between each others, a
NodeHook is used. Every node must have access to a NodeHook to add itself
to the registry. For nodes that take no input, the Source0, the NodeHook is
passed as an implicit parameter. For any other nodes, the NodeHook is prop-
agated through the graph. All others nodes use the NodeHook from their
source1. This is similar to the way Scheduler are propagated through the
graph.

Graphical representation

The graphical representation is a graph in the ASCII format. The
library ascii-graphs is used to generate the output in ASCII from sets of
vertices and edges. The set of vertices and edges is retrieved from the set of
nodes contained in NodeHook and their sources.

FlowApp

A FlowApp[M, I] is an extension of the scala App, a trait that
treats the inner declaration of an object as a main program function. Its type
parameters correspond respectively to the type parameter of ModelHook[M]
and InitHook[I]. A FlowApp has the methods drawExpandedGraph()
which display the ASCII representation of the graph and the method
run(model, init) which run the evaluation of the simulation with the
given model and initialization value.

Spatial integration

Scala-flow can also be used as a complementary tool for the devel-
opment of applications embedding Spatial, a language to design hardware
accelerators. Accelerators can be easily represented as simple transformation
nodes in a data flow and hence as a regular OpX node in scala-flow.

SpatialBatch and its variants are the nodes used to embed spa-
tial applications. SpatialBatchRawXs run a user-defined application. The
application can use the list of incoming packets as a constant list of values.
X is the number of sources of the node. SpatialBatchXs are specialized
SpatialBatchRawXs with additional syntactic sugar such that there is no
more boilerplate and the required code is reduced to the most essential to
write stream processing Spatial applications. It is only to define a function

61

https://github.com/mdr/ascii-graphs

def spatial(x: TSA): SR where TSA is a struct containing a value v of
type SA (see below) and the packet timestamp as t.

If we take a look at SpatialBatch1’s signature,

abstract class SpatialBatch1[A, R, SA: Bits: Type, SR: Bits: Type]
(val rawSource1: Source[A])
(implicit val sa: Spatialable[A] { type Spatial = SA },

val sr: Spatialable[R] { type Spatial = SR }
)

we see that it takes type parameter A, R, SA, SR and the typeclass
instances of Spatialable for SA and SR. A and R are the type members
representing respectively the incoming and outgoing packet type. SA and SR
are the spatial type into what they are converted to such that they can be
handled by a spatial DSL. Indeed, scala.Double and spatial.Double
are not the same type. The latter is a staged type part of the spatial DSL.

Spatialable[A] is a typeclass that declare a conversion from A to a
Spatial type (declared as the inner type member Spatial of Spatialable.

There exists a Spatialable[Time] which make the following exam-
ple possible:

val clock1 = new Clock(0.1).stop(10)
val clock2 = new Clock(0.1).stop(10)

val spatial = new SpatialBatch1[Time, Time, Double, Double](clock1) {
def spatial(x: TSA) = {
cos(x.v)

}
}

val spatial2 = new SpatialBatch1[Time, Time, Double, Double](clock2) {
def spatial(x: TSA) = {
x.v + 42

}
}

val spatial3 = new SpatialBatch2[Time, Time, Time, Double, Double, Double]
(spatial, spatial2) {

def spatial(x: Either[TSA, TSB]) = {
x match {
case Right(t) ׆ك t.v+10
case Left(t) ׆ك t.v-10

}
}

}

Plot(spatial3)

Figure 2.11: Usage demonstration of spatial batches

Even though it looks inconspicuous, the cos, +, - functions are actu-

62

ally functions from the Spatial DSL. This simple scala-flow program actually
compiles and runs through the interpreter 3 different Spatial programs.

The development of an interpreter was required so that Spatial ap-
plications could run on the same runtime than scala-flow. The interpreter
development is detailed in the next part of this thesis.

Conclusion

scala-flow is a modern framework to simulate, develop, prototype
and debug applications which have a natural representation as data-flows. Its
integration with Spatial makes it a good tool to include with Spatial to ease the
development complex applications whenever the accelerated application needs
to be written over multiple iterations of increasing complexity, and tested on
different scenarios with modelable environments.

63

3 | An interpreter for Spatial

Spatial: A Hardware Description Language

Building applications is only made possible thanks to the many layers
of abstractions that start fundamentally at a rudimentary level. It is easy to
forget how much of an exceptional feat of engineering is running an application.

Figure 3.1: An Hardware vs Software abstraction layers overview

An Hardware Description Language (HDL) is used to describe the
circuits on which applications run on. A Software programming language
describe the applications themselves (imperative languages focus on the how,
and functional programming languages on the what). Fundamentally, their
purpose is different. But with a sufficient level of abstraction, they share
many similarities.

64

c =:ك a + b would translate in software by an instruction to store in
the memory (stack or heap) the sum of a and b, stored themselves somewhere
else in memory. In hardware, depending on whether c represents a wire,
a register, a memory location in SRAM or DRAM, the circuit is changed.
However, from the user perspective, the source code looks the same. One
could think that it would be possible to write Hardware exactly the same way
as Software, but this is delusional. Some concepts are tied to the intrinsic
nature of Hardware and hopelessly inexpressible in the world of Software. A
DSL that would abstract away those differences would result in a great loss
of control for the user. Nevertheless, with the right level of abstraction it is
possible to at least bridge the gap to a level satisfying for both the Software
and Hardware engineers. This is the motivation behind Spatial.

Spatial is hardware description language (HDL) born out of the diffi-
culties and complexity of designing Hardware. An HDL compiles to Register-
Transfer Level (RTL), an equivalent to assembly in the software world. Then
the RTL is synthesized as Hardware (either as Application-specific integrated
circuit (ASIC) or as a bitstream reconfiguration data). The current alterna-
tives for HDLs available are Verilog, VHDL, HLS, Chisel and many others.
What sets apart Spatial from the crowd is that Spatial has a higher level of
abstraction by leveraging parallel patterns, abstracting control flows as lan-
guage constructs and automatic timing and banking. Spatial targets “spatial
architectures” constituted currently of the Field-Programmable Gate Array
(FPGA) and a Coarse Grain Reconfigurable Arrays (CGRA) developed also
by the lab, Plasticine. Chisel is actually the target language of Spatial for the
FPGA backend. Parallel patterns and control flows are detailed in Part IV.

Spatial is at the same time a language, an Intermediate Representation
(IR) and a compiler. The Spatial language is embedded in Scala as a domain
specific language (DSL). The compiler is built around Argon as a set custom
defined traversals, transformers and codegens. The Spatial compiler is referred
to as “the staging compiler” to differentiate it from scalac, the Scala compiler.

Argon

Spatial is built on top of Argon, a fork of Lightweight Modular Staging
(LMS). Argon and LMS are Scala libraries that enable staged programming
(also called staged meta-programming). Thanks to Argon, language designers
can specify a DSL and a custom compiler. In this DSL, users can write and
run meta-programs and more specifically program generators: programs that
generate other programs.

Argon is:

• two-staged: There is only a single meta-stage and a single object-stage.
The idea behind Argon is that the meta-program is constructing an IR

65

programmatically in Scala through the frontend DSL, transforms that
IR and finally codegens the object program. All of this happening at
runtime.

• heterogenous: The meta-program is in Scala but the generated meta-
program does not have to be in Scala as well. For instance, for FPGA, the
target language is both C++ and Chisel (an embedded DSL in Scala).

• typed: The DSL is typed which enables Scala to typecheck the construc-
tion of the IR. Furthermore, the IR is itself typed. The IR being typed
ensures that language designers write sound DSLs and corresponding IR.

• automatic staging annotations: Staging annotations are part of the
frontend DSL. Implicit conversions exist from unstaged types to staged
types. Staging annotations exists under the form of typeclass instances
and inheritance.

Staged type

A staged type is a type that belongs to the specified DSL and has a
staging annotation. Only instances of a staged type will be transformed into
the initial IR.

Indeed, for a type to be considered a staged type, it must inherit from
MetaAny and have an existing typeclass instance of Type. The justification
behind the dual proof of membership is that the Type context bound is more
elegant to work with in most cases. Nevertheless, it suffers that it is impossi-
ble to specialize methods such that they treat differently staged and unstaged
types. Only inheritance can guarantee correct dispatching of methods accord-
ing to whether the argument is staged or not. Implementing the typeclass and
dual proof of membership was among the contributions of this work to Argon.

trait MetaAny
trait Type[A]

case class Staged() extends MetaAny
case class Unstaged()

implicit object StagedInstance extends Type[Staged]

object Attempt1 {
equivalent//ق to def equal(x: Any, y: Any) =
def equal[A, B](x: A, y: B) =

1

def equal[A: Type, B: Type](x: A, y: B) =
2

}

66

object Attempt2 {
def equal(x: Any, y: Any) =

1

def equal(x: MetaAny, y: MetaAny) =
2

}

Attempt1.equal(Unstaged(), Unstaged())
return//ق error: ambiguous reference to overloaded definition
Attempt1.equal(Staged(), Staged())
return//ق error: ambiguous reference to overloaded definition

Attempt2.equal(Unstaged(), Unstaged())
return//ق 1 as expected
Attempt2.equal(Staged(), Staged())
return//ق 2 as expected

Figure 3.2: Example of inheritance solving correct dispatching

IR

The IR in Argon is based on a “sea-of-nodes” representation of the
object-program. The “sea-of-nodes” representation is a graph containing all
kind of dependencies and anti-dependencies between the nodes of the IR. The
IR is the data manipulated by the staging compiler and is transformed after
each pass. The IR nodes are staged Exp values. Exp is an algebraic data type
(ADT), more precisely a sum type of the following form:

• Consts are staged expressions whose value is known during staging. Since
the staging compiler is aware of the value, some optimizations can be
applied. For instance, constant folding can simplify the object-program
considerably.

• Params are specialized Consts whose purpose is specifically for Design
Space Exploration (DSE). DSE refers to the activity of exploring design
alternatives prior to implementation. Users define Params as range of
values and, within them, the compiler will attempt to find the best trade-
off in terms of area and throughput [6] among others.

• Sym stands for “Symbol”. Syms are always associated with Defs. Def
is a library author defined ADT. More precisely, it is the sum type of
all the product type of library author defined named staged functions.
Defs take a staged type parameter and are products of other staged type
only.

• Bounds are similar to Syms but are bounded by a scope. They represent
staged local variables.

67

Exp

Dyn

Bound Sym

Const

Param

• Dyns are the complement of Consts and represent any staged expressions
whose value is dynamic, not known during staging. It is the sum type
of Bound and Sym.

Transformer and traversal

A Traversal is a pass of the compiler that traverses (iterates through)
the entire IR and applies an arbitrary function. It can either be used to check
if the IR is well-formed or to gather some logs and stats about the current
state of the IR. Since the IR is a “sea-of-nodes”, it has to be linearized first
by a scheduler as a sequence of nodes. Codegen is defined as a traversal.

A Transformer is a Traversal that not only traverses the IR but also
transforms it into a new IR.

Language virtualization

Using Scala macros, some of the primitive syntax constructions and
keywords of Scala are made interoperable with Spatial staged types. The
following parts are currently virtualized (where cond is an Argon.Boolean):

68

• if (cond) expr1 else expr2
• while (cond) expr1 (in progress)

Below, a and b are Any:

• a ׃ك b
• a =!ك b
• a.toString
• a + b

Source Context

All usage of the DSL in the meta-program is accompanied with an
implicit macro expansion of a SourceContext object. That object is passed
along in the IR such that all IR nodes have an associated SourceContext.
That object contains context information such as the line number, the position
in the line, the method name, and the content of the line on which the DSL
node at the origin is located. This is how the interpreter can display the
surrounding context of each interpreted instruction.

Meta-expansion

Since DSLs are embedded in Scala, it is possible to use the Scala
language as a meta-programming tool directly. The construction of the IR is
done in an imperative manner and only staged types are visible to the staging
compiler.

List.tabulate(100)(_ ׆ك Reg[Int])

will be meta-expanded as the creation of 100 Registers.

For the same reason, when named Scala functions are defined and
called inside a Spatial program, the function call is not staged but inlined
during meta-expansion.

def f(x: argon.Int) =
very//ق long body

val b: argon.Boolean = ...كك

thanks//ق to language virtualization, this is syntaxic sugar for
,ifThenElse(b//ق f(0), f(1)) where ifThenElse is an argon defined
function//ق
if (b)

f(0)

69

else
f(1)

is expanded into

val b: argon.Boolean = ...كك

if (b)
very//ق long body involving 0

else
very//ق long body involving 1

Codegen

After the IR has been transformed through all the passes, it is suffi-
ciently refined to be processed by the codegen. The codegen is implemented
as a traversal which, after linearization by scheduling, visits each item of a
sequence of pair of Sym and Def. Each pair is transformed according to the
Def as a string in the format of the target language and written to the output
file. Def nodes have versatile meaning since they encompass the full range
of the language. Language designers add Def nodes to their language in a
modular manner. For Spatial, each kind of data type have an associated set of
Defs which are defined in their own modules and mixed-in incrementally to
the compiler. For instance, argon.Boolean have among others Def nodes
that can be simplified as:

• case class Not (a: Exp[argon.Boolean]) extends Def[argon.Boolean]
• case class And (a: Exp[argon.Boolean], b: Exp[argon.Boolean])

extends Def[argon.Boolean]
• case class Or (a: Exp[argon.Boolean], b: Exp[argon.Boolean])

extends Def[argon.Boolean]

Staging compiler flow

The full work flow of program staging through Argon is as follows: The
meta-program is first compiled by scalac as an “executable meta-program”.
When this executable is run, it starts meta-expansion and as a result, con-
structs an initial IR. That initial IR goes through the different transformers
which correspond to the passes of the staging compiler. Once the IR is suf-
ficiently refined by having been through all the passes, it is codegen in the
target language.

70

Simulation in Spatial

Scala	Runtime:	2nd	stage

passes

Scala	Compile	Time:	1st	stage

meta-expansion

staging

Executable	Meta-Program

expanded	DSL	nodes

raw	IR

codegen

Chisel	Object	Program

Chisel	Compiler

Verilog	Program

Verilog	Compiler

Hardware	Design

transformer

IR

Meta-Program

scalac

Figure 3.3: Flow diagram of
the argon compiler

Synthesizing takes time, many days in
some instances. It is beneficial for users to
have access to an early proof of correctness
of the program’s logic. This justifies the ex-
istence of a simulation mode. Before the de-
velopment of the interpreter, the simulation
mode was a codegen whose target was a Scala
program of the simulated circuit logic. The re-
sulting Scala program is self-contained and re-
produces the execution of the hardware design,
but only to some extent. To mirror exactly the
execution of the design, it is required to write
a cycle accurate simulator. It is possible but
not simple, especially writing it in a codegen
form. Furthermore, a cycle-accurate simula-
tor already exists: Synopsys Verilog Compiler
Simulator (VCS). However, VCS takes Verilog
as input. Hence, it cannot leverage the richer
information from the DSL and the debugging
cannot be enhanced with Spatial annotations
(for instance with SourceContext). Finally,
writing a compiler is more complex than writ-
ing an equivalent interpreter.

Benefits of the interpreter

Building an interpreter for Spatial was
a requirement of having a Spatial integration
in scala-flow. Furthermore, it is a requirement
to integrate a Spatial simulator into any exter-
nal library. It also benefits the Spatial ecosys-
tem as a whole. Indeed, an interpreter en-
courages the user to have more interactions
with the language and working in increasing
complexity iterations thanks to fast feedback
since the work flow involves less steps, is faster
to launch and is more tightly integrated with

Spatial (the interpreter has access to SourceContext, among others). The
interpreter is not yet cycle-accurate, but this is planned as future work.

71

Interpreter

Scala	Runtime:	2nd	stage

passes

Scala	Compile	Time:	1st	stage

meta	-expansion

staging

Executable	Meta-Program

expanded	DSL	nodes

raw	IR

interpreter

transformer

IR

Meta-Program

scalac

Figure 3.4: Flow diagram of
the argon interpreter

The interpreter is implemented as an
alternative to codegen. The largest benefit of
this approach is that the interpreter sees an
IR that has already been processed and can
mirror closely the codegen and the intended
evaluation of the generated code. Moreover,
if one of the passes fails or throw an error,
then running the interpreter will also halt at
that error.

Usage

Any Spatial application can be run us-
ing the CLI flag .interpreter--ك If used in
combination with the flag -v (for “verbose”),
each instruction interpretation will display the
full state of the interpreter. If used without
any verbosity flag, then only the name and
number of the instruction is displayed at each
step. Finally, if the flag -q (for “quiet”) is
used, then nothing is displayed during the in-
terpreter execution. At all verbosity levels,
the state of the interpreter includes the result
in the output bus, if any, is displayed after the
last instruction has been interpreted.

Debugging nodes

The Argon DSL has been extended
with the static methods breakpoint()
and exit(). The method breakpoint()
pauses the interpreter and displays its internal state. A key must be pressed
to resume the interpreter evaluation.

The method exit() stops the evaluation of the interpreter.

72

Figure 3.5: Screenshot of the interpreter in action

73

Interpreter stream

In addition to standard applications being able to run as-is, applica-
tions that rely on streams have been given some specific attention in order to
ease their usage with the interpreter. Indeed, being able to run a Spatial appli-
cation in the same runtime as the application’s compilation gives the means to
do in-memory transfer between the meta-program (or the larger surrounding
program), to the object program to the input streams. This is made easy by
using the following pattern:

• The meta-program itself must be written in a trait extending
SpatialStream

• The main entry point of the interpreter mix-ins the meta-program defini-
tion trait with SpatialStreamInterpreter and declares the input
buses as well their content at start and the output buses.

• The main entry point for synthesizing mix-ins the meta-program defini-
tion trait with SpatialStreamCompiler

An example is provided below:

trait StreamInOutAdd extends SpatialStream {

@virtualize def spatial() = {
val in = StreamIn[Int](In1)
val out = StreamOut[Int](Out1)
Accel(*) {

out =:ك in + 4
breakpoint

}
}

}

object StreamInOutAddInterpreter extends StreamInOutAdd
with SpatialStreamInterpreter {

val outs = List(Out1)

val inputs = collection.immutable.Map[Bus, List[MetaAny[_]]](
(In1 <-ك List[Int](1, 2, 3, 6))

)

}

object StreamInOutAddCompiler extends StreamInOutAdd
with SpatialStreamCompiler

74

In-memory transfer was essential in integrating the spatial interpreter
with scala-flow.

Implementation

The IR given to the interpreter follows a static single assignment (SSA)
form. The interpreter is implemented as a traversal which, after linearization
by scheduling, visits a sequence of pair of Sym and Def. The interpreter core
is a central memory that contains the values of all symbols, and an auxiliary
memory that contains the values of the temporary bounds. The pair of Sym
and Def is processed by evaluating the Def node through modular extensions
of the interpreter that mirror the modular partitioning of the IR itself. Once
evaluated, the result is stored in the central memory with index the Sym. An
eval function is used as an auxiliary method for the evaluation of the nodes.
It takes as argument an Exp and can be simplified as:

• if the argument is a Sym, retrieve the corresponding values in the central
memory

• if the argument is a Const, return the value of the Const

Here is a very simplified example

val a: argon.Int = ...كك
val b = 2 + a
b * 4 * b

becomes//ق roughly after staging and linearization
Seq(

(x1, Add(Const(2), a)),
(x2, Mult(x1, Const(4))),
(x3, Mult(x2, x1))

)

let's//ق assume the central memory starts with:
a לك 1
the//ق interpreter will evaluates the seq as
x1 לك eval(2) + eval(a) = 2 + 1 = 3
x2 לك eval(x1) * eval(4) = 3 * 4 = 12
x3 לك eval(x2) * eval(x1) = 12 * 3 = 46

Blocks and control flows handling rely on node-defined traversals of
their inner body. Loops with various parallelizing factors are handled using
an interpreter-specific scheduler.

The currently implemented modules of the Spatial IR for the inter-
preter are:

• Controllers
• FileIOs
• Debuggings

75

• HostTransfers
• Regs
• Strings
• FixPts
• FltPts
• Arrays
• Streams
• Structs
• SRAMs
• DRAMs
• Booleans
• Counters
• Vectors
• FIFOs
• FSMs
• RegFiles
• Maths
• LUTs

Conclusion

The addition of an interpreter to Argon and Spatial improves the whole
ecosystem and offer new possibilities. Maintenance and extension of the simu-
lator will be easier to write in an interpreter form, especially if a cycle-accurate
simulator is developed. It is hoped that the interpreter will prove itself useful
in the workflow of all app developers and become a core element of Spatial.

76

4 | Spatial implementation
of an asynchronous Rao-
Blackwellized Particle
Filter

A Rao-Blackwellized Particle Filter turned out to be an ambitious ap-
plication, the most complex that was developed so far with Spatial. It is
an embarrassingly parallel algorithm and hence can leverage the parallelizable
benefits of an application-specific hardware design. Developing this, we gained
some insights specific about the hardware implementation of such an applica-
tion and some others specific to the particularities of Spatial. At the time of
the writing, some Spatial incomplete codegen prevented full synthesis of the
application, but it ran correctly in the simulation mode and the area usage
estimation fit on a Zynq board.

Area

The capacity of an FPGA is defined by its total resources: the synthe-
sizable area and the memories. Synthesizable area is defined by the number
of logic cells. Logic cells simulate any of the primitive logic gates through a
lookup table (LUT).

Memories are Scratchpad memory (SPM), high-speed internal writable
cells used for temporary storage of calculations, data, and other work in
progress. SPM are divided into 3 kinds:

• BRAM is a single cycle addressable memory that can contain up to 20Kb.
There are commonly on the order of magnitude of up to a thousand
BRAM.

• DRAM is burst-addressable (up to 512 bits at once) off-chip memory
that has a capacity on the order of Gb. The DRAM is visible to the

77

CPU and can be used as an interface mechanism to the FPGA.
• Registers are single elements memory (non-addressable). When used as

part of a group of registers, they make possible parallel access.

Parallel patterns

Parallel patterns [7] are a core set of operations that capture the essence
of possible parallel operations. The 3 most important one are:

• FlatMap
• Fold

filter is also an important pattern but can be expressed in term
of a flatMap (l.flatMap(x ׆ك if (b(x)) List(x) else Nil)).
Foreach is a Fold with a Unit accumulator. Reduce can be expressed as
a Fold (The Reduce operator from Spatial is actually a fold that ignores
the accumulator on the first iterator). By reducing these patterns to their
essence, and offering parallel implementations for them, Spatial can offer
powerful parallelization that fits most, if not all, use-cases.

In Spatial, FlatMap is actually composed by chaining a native Map
and a FIFO.

Control flows

Control flows (or flow of control) is the order in which individual state-
ments, instructions or function calls of an imperative program are executed or
evaluated. Spatial offers 3 kinds of Control flows.

Spatial has hierarchical loop nesting. When loops are nested, every
loop is an outer loop except the innermost loop. When there is no nesting,
the loop is an inner loop. Control flows are outer loop annotations in Spatial.
The 3 kind of annotation are:

• Sequential: The set of operations inside the annotated outer loop is done
in sequence, one after the other. The first operation of the next iteration
is never started before the last operation of the current iteration. syntax:
parallel pattern annotation Sequential.Foreach ...كك

• Parallel: The set of operations inside the annotated body is done in
parallel. Loops can be given a parallelization factor, which creates as
many hardware duplicates as the parallelization factor.
syntax: Parallel { body }, parallel counter annotation
(0 to N par parFactor).

78

• Pipe: The set of inner operations is pipelined Divided in 3 subkinds:

– Inner Pipe: Basic form of pipelining; Only chosen when all the
inner operations are primitive operations and hence, no buffering
is needed.

– Coarse-Grain: Pipelining of parallel patterns: When loops are
nested, a coarse-grain retiming and buffering must be done to
increase the pipe throughput syntax: Pipe { body } or for
parallel pattern annotation Pipe.Foreachكك
Syntax is shared for Inner pipe or Coarse-grain but chosen
depending on whether the inner operations are all “primitives” or
not

– Stream Pipe: As soon as an operation is done, it must be stored in
an hardware unit that support a FIFO interface (enqueue, dequeue),
such that the pipelining is always achieved in an as soon as possible
manner. Use the Stream syntax syntax: Stream { body } or
for parallel pattern annotation Stream.Foreach ...كك

When not annotated, the outer loop is a Pipe by default.

79

Numeric types

Numbers can be represented in two ways:

• fixed-point: In the fixed-point representation, an arbitrary number of
bits I represent the integer value, an arbitrary number of bits D represent
the decimal value. If the representation is signed, negative numbers are
represented using 2’s complement.

I defines the range (the maximum number that can be represented)
and D defines the precision. The range is centered on 0 if the representation
is signed.

In Spatial, the fixed-point type is declared by FixPt[S: _BOOL, I: _INT, D: _INT].
_BOOL is the typeclass of the types that represents a boolean. true and false
types are _TRUE and _FALSE.
Likewise for_INT,the typeclass of types that represent a literal integer. The
integers from 0 to 64 have the corresponding types _0, _1, …, _64.

• floating-point: In the floating-point representation, one bit represents
the sign, an arbitrary number of bits E represent the exponent and an
arbitrary number of bits represent the significand part.

In Spatial, the floating-point type is declared by FltPt[S: _INT, E: _INT].

By comparison, in the software world, the commonly available numeric
types for integers are fixed points: Byte (8-bits), Short (16-bits), Int (32-
bits), Long (64-bits) and for real floating-point: Float (32-bits), Double
(64-bits).

The floating-point representation is required for some applications be-
cause its precision increases as we get closer to 0: the space between all rep-
resentable numbers around 0 diminish whereas it is uniform over the whole
domain for the fixed point representation. This can be extremely important
to store probabilities (since joint probability, when not normalized, can be
infinitesimally small), or to store the result of exponentiation of negative
numbers (a small difference in value might represent a big difference pre-
exponentiation), or to store the values of square (we need more precision the
closest we are from 0 because the line of the real squared is more “dense” the
closer we are from 0). However, floating-point operations utilize more area
resources than fixed-point (an increase by an order of magnitude of around 2)

Fortunately, in Spatial, it is easy to define a type Alias to gather all
the values that should share the same representation and then switch from
floating-point to the fixed-point representation and tune the allocated number
of bits by editing solely the type alias.

80

(a) Host Interfaces

Accel{body}
A blocking accelerator design.

Accel(*){body}
A non-blocking accelerator design.

(b) Control Structures

min until max by stride* par factor*
A counter over the range [min,max).
stride: optional counter stride, default is 1
factor: optional counter parallelization, default is 1

if (cond){body}
[else if (cond){body}]
[else {body}]
Data-dependent execution.
Doubles as a multiplexer if all bodies return scalar values.
cond: condition for execution of associated body
body: arbitrary expression

FSM(init)(continue){action}{next}
An arbitrary finite state machine, similar to a while loop.
init: the FSM’s initial state
continue: the “while” condition for the FSM
action: arbitrary expression, executed each iteration
next: function calculating the next state

Foreach(counter+){body}
A parallelizable for loop.
counter: counter(s) defining the loop’s iteration domain
body: arbitrary expression, executed each loop iteration

Reduce(accum)(counter+){func}{reduce}
A scalar reduction loop, parallelized as a tree.
accum: the reduction’s accumulator register
counter: counter(s) defining the loop’s iteration domain
func: arbitrary expression which produces a scalar value
reduce: associative reduction between two scalar values

MemReduce(accum)(counter+){func}{reduce}
Reduction over addressable memories.
accum: an addressable, on-chip memory for accumulation
counter: counter(s) defining the loop’s iteration domain
func: arbitrary expression returning an on-chip memory
reduce: associative reduction between two scalar values

Stream(*){body}
A streaming loop which never terminates.
body: arbitrary expression, executed each loop iteration

Parallel{body}
Overrides normal compiler scheduling. All statements
in the body are instead scheduled in a fork-join fashion.
body: arbitrary sequence of controllers

DummyPipe{body}
A “loop” with exactly one iteration.
Inserted by the compiler, generally not written explicitly.
body: arbitrary expression

(c) Optional Scheduling Directives

Sequential.(Foreach|Reduce|MemReduce)
Sets loop to run sequentially.
Pipe(ii*).(Foreach|Reduce|MemReduce)
Sets loop to be pipelined.
ii: optional overriding initiation interval

Stream.(Foreach|Reduce|MemReduce)
Sets loop to be streaming.
Parallel.(Foreach|Reduce|MemReduce)
Informs the compiler that the loop is parallelizable.

(d) On-Chip Memories

FIFO[T](depth)
FIFO (queue) with a capacity of depth elements of type T
FILO[T](depth)
A FILO (stack) with a capacity of depth elements of type T
LineBuffer[T](r, c)
On-chip buffered scratchpad containing r buffers of c elements
LUT[T](dims+)(elements+)
Read-only Lookup Table containing supplied elements of type T
Reg[T](reset*)
Register holding a value of type T, with optional reset value
RegFile[T](dims+)
Register file of elements of type T with given dimensions
SRAM[T](dims+)
On-chip scratchpad of elements of type T with given dimensions

(e) Shared Host/Accelerator Memories

ArgIn[T]
Accelerator register initialized by the host
ArgOut[T]
Accelerator register visible to the host after accelerator execution
HostIO[T]
Accelerator register which the host may read and write at any time.
DRAM[T](dims+)
Burst-addressable, host-allocated off-chip memory.

(f) External Interfaces

StreamIn[T](bus)
Streaming input from a bus of external pins.
StreamOut[T](bus)
Streaming output to a bus of external pins.

(g) Design Space Parameters

default (min::max)
default (min::stride::max)
A compiler-aware design parameter with given default value.
Automated DSE explores the range [min, max] with optional stride.

Table 4.1: A subset of Spatial’s syntax. Square brackets (e.g. [T]) represent a
template’s type parameter. Parameters followed by a ’+’ denotes an argument
which can be given one or more times, while a ’*’ denotes that an argument
is optional. DRAMs, LUTs, RegFiles, and SRAMs can be allocated with
an arbitrary number of dimensions. Foreach, Reduce, and MemReduce
support multi-dimensional iteration domains.

81

Figure 4.1: Representable Real line and its corresponding floating-point rep-
resentation

only//ق this line need to be edited to change the representation
type SmallReal = FixPt[_TRUE, _4, _16]

val a: SmallReal = ...كك
val b: SmallReal = ...كك

Vector and matrix module

The state and uncertainty of a particle are a vector and a matrix (the
matrix of covariance). All the operations involving the state and uncertainty,
in particular Kalman prediction and Kalman update are matrix and vector
operations. Kalman updates, for instance, when written in the matrix form
is reasonably compact in the matrix form but actually represents a significant
amount of compute and operations. For the sake of code clarity, it is crucial
to be able to keep being able to write matrix operations in a succinct syntax.
Furthermore, matrix and vector operations are a common need and it would
be beneficial to write a reusable set of operations to Spatial. This is why a
vector and matrix module was developed and added to the standard library of
Spatial. The standard library is inaugurated by this module and its purpose
is to include all the common set of operations that should not be part of the
API because they do not constitute primitives of the language. Modules of
the stdlib (standard library) are individually imported based on the needs.

Matrix operations currently available are +, -, * (element wise when

82

applied to a scalar, else matrix multiplication), .transpose .det (matrix
determinant), .inverse, h (matrix height), w (matrix width). Vec opera-
tions currently available are +, -, * (element-wise with a scalar), .dot (dot-
product).

In place operations exists for +, -, * as :+, :-, :*. In place operations
use the RegFile of the first element for the output instead of creating a new
RegFile. This should be used with care because it makes pipelining much
more inefficient (since the register is written twice to with a long delay in-
between corresponding the operation).

Matrix and Vec operations are parallelized whenever loops are in-
volved.

Meta-Programming

Matrices and Vectors are stored as RegFile[Real] with the corre-
sponding dimension of the matrix. However, from a user perspective, it is
preferable to manipulate a type that corresponds to the abstraction, here a
vector or matrix. We can achieve this with a wrapper type with a no-cost
abstraction thanks to meta-expansion. Those wrapper types are hybrid types
mixing staged (for the dimension) and non-staged types (for the data). Indeed,
the staging compiler only sees the operations on the RegFile directly.

Here is a simplified example.

case class Vec(size: scala.Int, data: RegFile[Real]) {
def +(y: Vec) = {

require(y.size ׃ك size)
val nreg = RegFile[T](n)
Foreach(0ك::n){ i ׆ك

nreg(i) = data(i) + y.data(i)
}

copy(data = nreg)
}

}

val v = Vec.fill(3)
v + v

We can observe the require(y.size ׃ك size). Since size is a
non-staged type, the dimension is actually checked during meta-expansion.
Similarly, matrix sizes are checked for all operations and the dimensions are
propagated to the resulting matrix (e.g: Mat(a, b)*Mat(b,c) = Mat(a,c)). It
prevents early a lot of issues.

Furthermore, the Matrix API containing common matrix operations
is implemented by 3 classes:

83

• MatrixDense for matrices with dense data
• MatrixSparse for matrices with sparse data. Optimizes operations by

not doing unnecessary additions and multiplications when empty cells
are involved.

• MatrixDiag for diagonal matrices. Provide constant operations for
multiplications with other matrices by only modifying a factor compo-
nent. Use only 1 register for the whole matrix as a factor value.

The underlying implementation are hidden from the user since they
are all created from the Matrix companion object. Then, the most optimized
type possible is conserved through the transformation. When impossible to
know the structure of the new matrix, the fallback is MatrixDense.

Views

Some operations like transpose and many others do not need to actually
change the matrix upon which they are realized. They could just operate
on a view of the underlying RegFile memory. This view is also a no-cost
abstraction since it does not exist after meta-expansion.

Here is a simplified example.

sealed trait RegView2 {
def apply(y: Index, x: Index)(implicit sc: SourceContext): T
def update(y: Index, x: Index, v: T)(implicit sc: SourceContext): Unit

}

case class RegId2(reg: RegFile2[T]) extends RegView2 {
def apply(y: Index, x: Index)(implicit sc: SourceContext) =
reg(y, x)

def update(y: Index, x: Index, v: T)(implicit sc: SourceContext) =
reg(y, x) = v

}

case class RegTranspose2(reg: RegView2) extends RegView2 {
def apply(y: Index, x: Index)(implicit sc: SourceContext) = reg(x, y)
def update(y: Index, x: Index, v: T)(implicit sc: SourceContext) =
reg(x, y) = v

}

case class MatrixDense(h: scala.Int, w: scala.Int, reg: RegView2) extends Matrix {

def toMatrixDense = this

def apply(y: Index, x: Index)(implicit sc: SourceContext) = {
reg(y, x)

}

The//ق transpose operation do not actually do any staged operations.
It//ق simply invert the y and x dimension for update and access.
def t =
copy(h = w, w = h, reg = RegTranspose2(reg))

}

84

In the same spirit, views exist for SRAM access, constant values, vec
as diagonal matrix, matrix column as vec, matrix row as vec.

Mini Particle Filter

A “mini” particle Filter has been developed at first. The model has
been simplified. It supposes that the drone always has the same normal orien-
tation and only moves in 2D, on the x and y axis. The state to estimate is only
the 2D position. It is a plain particle filter and therefore, not conditioned on a
latent variable and without any Kalman filtering. Thus, no matrix operations
need to be applied. The sensor measurements are stored and loaded directly
as constant values in the DRAM. This filter is a sanity check that the particle
filter structure is sound, fittable on a Zynq board and working as expected.

The full Mini Particle Filter source code application is contained in
the Appendix and publicly available as a Spatial application on github.

Rao-Blackwellized Particle Filter

The RBPF implementation on hardware follows the expected structure
of the filter thanks to Spatial’s high level of abstraction. To implement the
sensors needing to be processed in order, one FIFO is assigned for each sensor.
Then an FSM dequeues and updates the filter one measurement at a time.
The dequeued FIFO is the one containing the measurement with the oldest
timestamp. This ensures that measurements are always processed one at a
time and in order of creation’s timestamp.

The full Rao-Blackwellized source code application is contained in the
Appendix and publicly available as a Spatial application on github.

Insights

• When writing complex applications, one must be careful about writing
functions. Indeed, functions are always applied and inlined during meta-
expansion. This results in the IR growing exponentially and causes the
compiler phase to take a long time. Staged functions will be brought to
Spatial to reduce the IR exponential growth in the future. However, the
intrinsic nature of hardware must result in function application being
“inlined” since the circuit are by definition duplicated when synthesized.
This is why, factoring should not be done the same way in Spatial as in
Software. In Software, a good factorization rule is to avoid all repetition
of the code by generalizing all common parts into functions. For Spatial,

85

https://github.com/stanford-ppl/spatial-apps/blob/develop/src/MiniParticleFilter.scala
https://github.com/stanford-ppl/spatial-apps/blob/develop/src/RaoBlackParticleFilter.scala

the factorization must be thought of as avoiding all repetition of the
synthesized hardware by reusing as many memories, signal and wires
as possible.

• Changing the numeric type matters: floating-point operations are much
costlier in term of area than fixed-point and should be used with parsi-
mony when the area resources are limited.

• Parallelization can be achieved through pipelining. Indeed, a pipeline
will attempt to use all the resources available in parallel. Compared to
duplicating hardware, a pipeline only takes at most N the biggest time
steps of the pipeline. If the time step is small enough compared to the
entire time length of the pipeline, the time overhead is small and no area
is wasted.

• Doing in-place operations seems like a great idea to save memory at first,
but it breaks pipelining so it has to be used with caution.

• Reducing the number of operations between first and last access is crucial
because the number of operation correspond to the depth of the pipeline.
When the depth grows large, coarse grain pipelining will have to create as
many intermediate buffers to ensure protected access at different stages
of the pipeline. Furthermore, the order of execution is currently not
rearranged by the compiler, so, in some cases, simply changing the order
of a few line of codes can make a tremendous difference in the depth of
the pipeline.

Conclusion

The Rao-Blackwellized Particle Filter is a complex application. It
would have been impractical, almost to the point of infeasible, to attempt
to build it with a reasonable latency and throughput, in a timely manner,
for a single person, if not for Spatial. We also gained insights about the
development of complex applications for spatial and developed a new Matrix
module as part of the standard library that might ease the development of
new Spatial applications.

86

Conclusion

This work presents a novel approach to POSE estimation of drones
with an accelerated, asynchronous, Rao-Blackwellized Particle Filter and its
implementation in software and hardware. A Rao-Blackwellized Particle Fil-
ter is mathematically more sound to solve the complexities of tracking the
non-linear transformations of the orientation through time than current alter-
natives. Furthermore, we show that this choice improves upon the accuracy
for both the position and orientation estimation.

To exploit the inherent parallelism in the filter, we have developed
a highly accurate hardware implementation in Spatial with low latency and
high throughput, capable of handling highly dynamic settings such as drone
tracking.

We have also developed two components that ease the design of hard-
ware data paths for streaming applications; Scala-flow, a standalone data-flow
simulation tool, and an interpreter for Spatial that can execute at staging
time any arbitrary Spatial program. The interpreter is a key component to
enable integration of the hardware programmability of Spatial to the stream-
ing capabilities of Scala-flow. Scala-flow offers a functional interface, accurate
functional simulation, hierarchical and modular grouping of nodes through
blocks, immutable representation of the data flow graph, automatic batch
scheduling, a graph structure display, interactive debugging and the ability to
generate plots.

On a higher level, this work shows that Scala, being the underlying
language substrate behind Spatial, enables building complex and extensive
development tools without sacrificing productivity. It also shows that Spa-
tial is a powerful, productive, and versatile language that can be used in a
wide range of applications, such as extending the current state-of-the-art of
embedded drone applications.

87

Acknowledgments

Thank you to my parents for their continuous support, to Prof. Oluko-
tun and Prof. Odersky for supervising me and giving me the opportunity of
doing this master thesis in their lab, to the entire lab of DAWN, in partic-
ular David Koeplinger, Raghu Prabhakar, Matt Feldman, Yaqi Zhang, Tian
Zhao, Stefan Hadjis which accepted me as their peer for the length of my stay.
I would also like to thank Nada Amin which supervised me for the semester
project that led to this project and accepted to be an expert for the evaluation
of the thesis, and my sister Saskia Fiszel for her thorough proofreading.

I am also grateful to the whole institution of EPFL for the education
I have received those last 5 years and for which this thesis represents the
culmination. Finally, to Stanford for having welcomed me for 6 months as a
Visiting Researcher Student.

88

Appendix

Mini Particle Filter

type CReal = scala.Double
type SReal = FixPt[TRUE, _16, _16]

implicit def toSReal(x: CReal) = x.to[SReal]

type STime = SReal
type SPosition2D = SVec2
type SAcceleration2D = SVec2
type SWeight = SReal

@struct case class SVec2(x: SReal, y: SReal)
@struct case class TSA(t: Double, v: SAcceleration2D)
@struct case class TSB(t: Double, v: SPosition2D)
@struct case class TSR(t: Double, v: SPosition2D)

val N: scala.Int = 10
val covAcc: scala.Double = 0.01
val covGPS: scala.Double = 0.01
val dt: scala.Double = 0.1

val lutP: scala.Int = 10000

lazy val sqrtLUT =
LUT[SReal](lutP)(List.tabulate[SReal](lutP)

(i ׆ك math.sqrt(((i/lutP.toDouble)*5))):_*)

lazy val logLUTSmall =
LUT[SReal](lutP)(((-9:SReal)ك::List.tabulate[SReal](lutP-1)

(i ׆ك math.log(((i+1)/lutP.toDouble)*1))):_*)

lazy val logLUTBig =
LUT[SReal](lutP)(((-9:SReal)ك::List.tabulate[SReal](lutP-1)

(i ׆ك math.log(((i+1)/lutP.toDouble)*200))):_*)

lazy val expLUT =
LUT[SReal](lutP)(List.tabulate[SReal](lutP)

(i ׆ك math.exp(i/lutP.toDouble*20-10)):_*)

@virtualize
def log(x: SReal) = {
if (x < 1.0)
logLUTSmall(((x/1.0)*(lutP.toDouble)).to[Index])

else

89

logLUTBig(((x/200.0)*(lutP.toDouble)).to[Index])
}

@virtualize
def sqrt(x: SReal) = {
if (x < 5)
sqrtLUT(((x/5.0)*(lutP.toDouble)).to[Index])

else
sqrt_approx(x)

}

@virtualize
def exp(x: SReal): SReal = {
if (x עك -10)
4.5399929762484854E-5

else
expLUT((((x+10)/20.0)*(lutP.toDouble)).to[Index])

}

val initV: (CReal, CReal) = (0.0, 0.0)
val initP: (CReal, CReal) = (0.0, 0.0)

val matrix = new Matrix[SReal] {
val IN_PLACE = false
def sqrtT(x: SReal) = sqrt(x)
val zero = 0
val one = 1

}

import matrix._

def toMatrix(v: SVec2): Matrix = {
Matrix(2, 1, List(v.x, v.y))

}

def toVec(v: SVec2): Vec = {
Vec(v.x, v.y)

}

def initParticles(weights: SRAM1[SWeight], states: SRAM2[SReal],
parFactor: Int) = {

sqrtLUT
expLUT
logLUTSmall
logLUTBig
Foreach(0 ::ك N par parFactor)(x ׆ك {

Pipe {
Pipe { states(x, 0) = initV._1 }
Pipe { states(x, 1) = initV._2 }
Pipe { states(x, 2) = initP._1 }
Pipe { states(x, 3) = initP._2 }

}

weights(x) = math.log(1.0 / N)

})
}

@virtualize def spatial() = {

val inAcc = StreamIn[TSA](In1)
val inGPS = StreamIn[TSB](In2)
val out = StreamOut[TSR](Out1)

90

val parFactor = 1 (1 <-ك N)

Accel {

val weights = SRAM[SWeight](N)
val states = SRAM[SReal](N, 4)

Sequential {

initParticles(weights, states, parFactor)

Sequential.Foreach(1 ::ك 101)(i ׆ك {

updateFromAcc(inAcc.v, dt, states, parFactor)

if (i%5 ׃ك 0) {
updateFromGPS(inGPS.v, weights, states, parFactor)
normSWeights(weights, parFactor)

}

out =:ك TSR(i.to[Double]*dt.to[Double],
averagePos(weights, states, parFactor))

if (i%5 ׃ك 0 ֶك tooLowEffective(weights))
resample(weights, states, parFactor)

})
}

}
}

@virtualize def updateFromAcc(acc: SAcceleration2D, dt: STime,
states: SRAM2[SReal], parFactor: Int) = {

Foreach(0 ::ك N par parFactor)(i ׆ك {
val dv = sampleVel(acc, dt, covAcc)
val s = Matrix.fromSRAM1(4, states, i)
val ds = Matrix(4, 1, List(dv(0), dv(1), s(0, 0)*dt, s(1, 0)*dt))
val ns = s + ds
ns.loadTo(states, i)

})
}

@virtualize def tooLowEffective(weights: SRAM1[SReal]): Boolean = {
val thresh = log(1.0/N)
val c = Reduce(0)(0ك::N)(i ׆ك if (weights(i) > thresh) 1 else 0)(_+_)
c < N/10

}

def updateFromGPS(pos: SPosition2D, weights: SRAM1[SReal],
states: SRAM2[SReal], parFactor: Int) = {

val covPos = Matrix.eye(2, covGPS)
Foreach(0 ::ك N par parFactor)(i ׆ك {
val state = Matrix.fromSRAM1(2, states, i, false, 2)
val lik = unnormalizedGaussianLogPdf(toMatrix(pos), state, covPos)
weights(i) = weights(i) + lik

})
}

@virtualize def sampleVel(a: SAcceleration2D, dt: STime,
covAcc: SReal): Vec = {

val withNoise = gaussianVec(toVec(a), covAcc)
val integrated = withNoise * dt
integrated

}

def gaussianVec(mean: Vec, variance: SReal) = {

91

val g1 = gaussian()
(Vec(g1._1, g1._2) * sqrt(variance)) + mean

}

Box-Muller//ق
www.design.caltech.edu/erik/Misc/Gaussian.htmlقق//ق:http//ق
@virtualize def gaussian() = {

val x1 = Reg[SReal]
val x2 = Reg[SReal]
val w = Reg[SReal]
val w2 = Reg[SReal]

FSM[Boolean, Boolean](true)(x ׆ك x)(x ׆ك {
x1 =:ك 2.0 * random[SReal](1.0) - 1.0
x2 =:ك 2.0 * random[SReal](1.0) - 1.0
w =:ك (x1 * x1 + x2 * x2)

})(x ׆ك w.value ك 1.0)

w2 =:ك sqrt((-2.0 * log(w.value)) / w)

val y1 = x1 * w2;
val y2 = x2 * w2;

(y1, y2)
}

@virtualize def normSWeights(weights: SRAM1[SWeight], parFactor: Int) = {
val totalSWeight = Reg[SReal](0)
val maxR = Reg[SReal](-100)
maxR.reset
totalSWeight.reset
Reduce(maxR)(0 ::ك N)(i ׆ك weights(i))(max(_, _))
Reduce(totalSWeight)(0 ::ك N)(i ׆ك exp(weights(i) - maxR))(_ + _)
totalSWeight =:ك maxR + log(totalSWeight)
Foreach(0 ::ك N par parFactor)(i ׆ك {
weights(i) = weights(i) - totalSWeight

})

}

@virtualize def resample(weights: SRAM1[SWeight], states: SRAM2[SReal],
parFactor: Int) = {

val cweights = SRAM[SReal](N)
val outStates = SRAM[SReal](N, 4)

val u = random[SReal](1.0)

Foreach(0 ::ك N)(i ׆ك {
if (i ׃ك 0)

cweights(i) = exp(weights(i))
else

cweights(i) = cweights(i - 1) + exp(weights(i))
})

val k = Reg[Int](0)
Foreach(0 ::ك N)(i ׆ك {
def notDone = (cweights(k) * N < i.to[SReal] + u) ֶك k < N
FSM[Boolean, Boolean](notDone)(x ׆ك x)(x ׆ك k =:ك k + 1)(x ׆ك notDone)

Foreach(0 ::ك 4)(x ׆ك {
outStates(i, x) = states(k, x)

})

})

92

Foreach(0 ::ك N par parFactor)(i ׆ك {

Foreach(0 ::ك 4)(x ׆ك {
states(i, x) = outStates(i, x)

})

weights(i) = log(1.0 / N)
})

}

def unnormalizedGaussianLogPdf(measurement: Matrix, state: Matrix,
cov: Matrix): SReal = {

val e = (measurement - state)
-1 / 2.0 * ((e.t * (cov.inv) * e).apply(0, 0))

}

@virtualize def averagePos(weights: SRAM1[SReal], states: SRAM2[SReal],
parFactor: Int): SVec2 = {

val accumP = RegFile[SReal](2, List[SReal](0, 0))
accumP.reset
Foreach(0 ::ك N par parFactor, 0 ::ك 2)((i, j) ׆ك {
accumP(j) = accumP(j) + exp(weights(i)) * states(i, j + 2)

})

SVec2(accumP(0), accumP(1))
}

Rao-Blackwellized Particle Filter

type SCReal = scala.Double
type SReal = FixPt[TRUE, _16, _16]

implicit def toReal(x: SCReal) = x.to[SReal]

val N: scala.Int = 10
val initV: (SCReal, SCReal, SCReal) = (0.0, 0.0, 0.0)
val initP: (SCReal, SCReal, SCReal) = (0.0, 0.0, 0.0)
val initQ: (SCReal, SCReal, SCReal, SCReal) = (1.0, 0.0, 0.0, 0.0)
val initCov = 0.00001

val initTime: SCReal = 0.0
val covGyro: SCReal = 1.0
val covAcc: SCReal = 0.1
val covViconP: SCReal = 0.01
val covViconQ: SCReal = 0.01

@struct case class SVec3(x: SReal, y: SReal, z: SReal)

type STime = SRealق//Double
type SPosition = SVec3
type SVelocity = SVec3
type SAcceleration = SVec3
type SOmega = SVec3
type SAttitude = SQuat

@struct case class SQuat(r: SReal, i: SReal, j: SReal, k: SReal)
@struct case class SIMU(a: SAcceleration, g: SOmega)

93

@struct case class TSA(t: STime, v: SIMU)
@struct case class SPOSE(p: SVec3, q: SAttitude)
@struct case class TSB(t: STime, v: SPOSE)
@struct case class TSR(t: STime, pose: SPOSE)
@struct case class Particle(w: SReal, q: SQuat,

lastA: SAcceleration, lastQ: SQuat)

val lutP: scala.Int = 10000
val lutAcos: scala.Int = 1000

lazy val acosLUT =
LUT[SReal](lutAcos)(List.tabulate[SReal](lutAcos)

(i ׆ك math.acos(i/lutAcos.toDouble)):_*)

lazy val sqrtLUT =
LUT[SReal](lutP)(List.tabulate[SReal](lutP)

(i ׆ك math.sqrt(((i/lutP.toDouble)*5))):_*)

lazy val logLUTSmall =
LUT[SReal](lutP)(((-9:SReal)ك::List.tabulate[SReal](lutP-1)

(i ׆ك math.log(((i+1)/lutP.toDouble)*1))):_*)

lazy val logLUTBig =
LUT[SReal](lutP)(((-9:SReal)ك::List.tabulate[SReal](lutP-1)

(i ׆ك math.log(((i+1)/lutP.toDouble)*200))):_*)

lazy val expLUT =
LUT[SReal](lutP)(List.tabulate[SReal](lutP)

(i ׆ك math.exp(i/lutP.toDouble*20-10)):_*)

def sin(x: SReal) = sin_taylor(x)
def cos(x: SReal) = cos_taylor(x)

@virtualize
def log(x: SReal) = {
if (x < 1.0)
logLUTSmall(((x/1.0)*(lutP.toDouble)).to[Index])

else
logLUTBig(((x/200.0)*(lutP.toDouble)).to[Index])

}

@virtualize
def sqrt(x: SReal) = {
if (x < 5)
sqrtLUT(((x/5.0)*(lutP.toDouble)).to[Index])

else
sqrt_approx(x)

}

@virtualize
def exp(x: SReal): SReal = {
if (x עك -10)
4.5399929762484854E-5

else
expLUT((((x+10)/20.0)*(lutP.toDouble)).to[Index])

}

@virtualize
def acos(x: SReal) = {
val ind = (x*(lutP.toDouble)).to[Index]
if (ind עك 0)
0

else if (ind ك lutAcos)

94

PI
else {
val r = acosLUT(ind)
if (x ك 0)

r
else

PI - r
}

}

val matrix = new Matrix[SReal] {
val IN_PLACE = false
def sqrtT(x: SReal) = sqrt(x)
val zero = 0.to[SReal]
val one = 1.to[SReal]

}
import matrix._

def toMatrix(v: SVec3): Matrix = {
Matrix(3, 1, List(v.x, v.y, v.z))

}

def toVec(v: SVec3): Vec= {
Vec(v.x, v.y, v.z)

}

implicit class SQuatOps(x: SQuat) {
def *(y: SReal) = SQuat(x.r * y, x.i * y, x.j * y, x.k * y)
def *(y: SQuat) = SQuatMult(x, y)
def dot(y: SQuat) = x.r * y.r + x.i * y.i + x.j * y.j + x.k * y.k
def rotateBy(q: SQuat) = q * x
def rotate(v: SVec3): SVec3 = {
val inv = x.inverse
val nq = (x * SQuat(0.0, v.x, v.y, v.z)) * inv
SVec3(nq.i, nq.j, nq.k)

}
def inverse = SQuatInverse(x)

}

def SQuatMult(q1: SQuat, q2: SQuat) = {
SQuat(
q1.r * q2.r - q1.i * q2.i - q1.j * q2.j - q1.k * q2.k,
q1.r * q2.i + q1.i * q2.r + q1.j * q2.k - q1.k * q2.j,
q1.r * q2.j - q1.i * q2.k + q1.j * q2.r + q1.k * q2.i,
q1.r * q2.k + q1.i * q2.j - q1.j * q2.i + q1.k * q2.r

)
}

def SQuatInverse(q: SQuat) = {
val n = q.r * q.r + q.i * q.i + q.j * q.j + q.k * q.k
SQuat(q.r, -q.i, -q.j, q.j) * (1 / n)

}

@virtualize def initParticles(particles: SRAM1[Particle],
states: SRAM2[SReal],
covs: SRAM3[SReal],
parFactor: Int) = {

acosLUT
logLUTSmall
logLUTBig
sqrtLUT
expLUT

Sequential.Foreach(0ك::N par parFactor)(x ׆ك {

Pipe {

95

Pipe { states(x, 0) = initV._1 }
Pipe { states(x, 1) = initV._2 }
Pipe { states(x, 2) = initV._3 }
Pipe { states(x, 3) = initP._1 }
Pipe { states(x, 4) = initP._2 }
Pipe { states(x, 5) = initP._3 }

}

val initSQuat = SQuat(initQ._1, initQ._2, initQ._3, initQ._4)

Sequential {
particles(x) = Particle(
math.log(1.0 / N),
initSQuat,
SVec3(0.0, 0.0, 0.0),
initSQuat

)
Foreach(06::ك, (i,j))(6::ك0 ׆ك
if (i ׃ك j)

covs(x, i, i) = initCov
else

covs(x, i, j) = 0
)

}
})

}

@virtualize def spatial() = {

val inSIMU = StreamIn[TSA](In1)
val inV = StreamIn[TSB](In2)
val out = StreamOut[TSR](Out1)

val parFactor = 1 (1 <-ك N)

Accel {

val sramBUFFER = SRAM[TSR](10)

val particles = SRAM[Particle](N)
val states = SRAM[SReal](N, 6)
val covs = SRAM[SReal](N, 6, 6)
val fifoSIMU = FIFO[TSA](100)
val fifoV = FIFO[TSB](100)

val lastSTime = Reg[STime](initTime)
val lastO = Reg[SOmega](SVec3(0.0, 0.0, 0.0))

Sequential {

initParticles(particles, states, covs, parFactor)

tsas.foreach(x ׆ك Pipe {fifoSIMU.enq(x) })
tsbs.foreach(x ׆ك Pipe {fifoV.enq(x) })

Parallel {

Stream(*)(x ׆ك {
fifoV.enq(inV)

})

Stream(*)(x ׆ك {
fifoSIMU.enq(inSIMU)

})

96

val choice = Reg[Int]
val dt = Reg[SReal]
FSM[Boolean, Boolean](true)(x ׆ك x)(x ׆ك {

Sequential {
if ((fifoV.empty ֶك !fifoSIMU.empty) ַك

(!fifoSIMU.empty ֶك
!fifoV.empty ֶك
fifoSIMU.peek.t < fifoV.peek.t))
{

choice =:ك 0
val imu = fifoSIMU.peek
val t = imu.t
lastO =:ك imu.v.g
dt =:ك (t - lastSTime).to[SReal]
lastSTime =:ك t

}
else if (!fifoV.empty) {

choice =:ك 1
val t = fifoV.peek.t
dt =:ك (t - lastSTime).to[SReal]
lastSTime =:ك t

}
else

choice =:ك -1

if (choice.value =!ك -1) {
updateAtt(dt, lastO, particles, parFactor)

}
if (choice.value ׃ك 0) {
val imu = fifoSIMU.deq()
imuUpdate(imu.v.a, particles, parFactor)

}
if (choice.value =!ك -1) {

kalmanPredictParticle(dt, particles, states, covs, parFactor)
}
if (choice.value ׃ك 1) {
val v = fifoV.deq()
viconUpdate(v.v, dt, particles, states, covs, parFactor)

}
if (choice.value =!ك -1) {

normWeights(particles, parFactor)

out =:ك TSR(lastSTime,
averageSPOSE(particles, states, parFactor))

resample(particles, states, covs, parFactor)
}

}
})(x ׆ك true)

}
}

}

getMem(out).foreach(x ׆ك println(x))
}

def rotationMatrix(q: SQuat) =
Matrix(3, 3, List(
1.0 - 2.0 * (q.j **ك 2 + q.k **ك 2),

2.0 * (q.i * q.j - q.k * q.r),
2.0 * (q.i * q.k + q.j * q.r),

2.0 * (q.i * q.j + q.k * q.r),
1.0 - 2.0 * (q.i **ك 2 + q.k **ك 2),

2.0 * (q.j * q.k - q.i * q.r),
2.0 * (q.i * q.k - q.j * q.r),

2.0 * (q.j * q.k + q.i * q.r),
1.0 - 2.0 * (q.i **ك 2 + q.j **ك 2)

97

))

@virtualize
def updateAtt(
dt: SReal,
lastO: SOmega,
particles: SRAM1[Particle],
parFactor: Int

) = {
Foreach(0ك::N par parFactor)(i ׆ك {
val pp = particles(i)
val nq =
if (dt > 0.00001)
sampleAtt(pp.q, lastO, dt)

else
pp.q

particles(i) = Particle(pp.w, nq, pp.lastA, pp.lastQ)
})

}

@virtualize
def kalmanPredictParticle(
dt: SReal,
particles: SRAM1[Particle],
states: SRAM2[SReal],
covs: SRAM3[SReal],
parFactor: Int

) = {
Foreach(0ك::N par parFactor)(i ׆ك {

val X: Option[SReal] = None
val Sdt: Option[SReal] = Some(dt)
val S1: Option[SReal] = Some(1)

val F =
Matrix.sparse(6, 6, IndexedSeq[Option[SReal]](
S1, X, X, X, X, X,
X, S1, X, X, X, X,
X, X, S1, X, X, X,
Sdt, X, X, S1, X, X,
X, Sdt, X, X, S1, X,
X, X, Sdt, X, X, S1

))

val pp = particles(i)

val U = Matrix.sparse(6, 1, IndexedSeq[Option[SReal]](
Some(pp.lastA.x * dt),
Some(pp.lastA.y * dt),
Some(pp.lastA.z * dt),
X,
X,
X

))
val rotMatrix = rotationMatrix(pp.lastQ)
val covFixAcc = (rotMatrix * rotMatrix.t) * (covAcc * dt * dt)
val Q = Matrix.sparse(6, 6, IndexedSeq[Option[SReal]](

Some(covFixAcc(0, 0)), Some(covFixAcc(0, 1)),
Some(covFixAcc(0, 2)), X, X, X,

Some(covFixAcc(1, 0)), Some(covFixAcc(1, 1)),
Some(covFixAcc(1, 2)), X, X, X,

Some(covFixAcc(2, 0)), Some(covFixAcc(2, 1)),
Some(covFixAcc(2, 2)), X, X, X,

X, X, X, X, X, X,
X, X, X, X, X, X,
X, X, X, X, X, X

98

))

val state = Matrix.fromSRAM1(6, states, i)
val cov = Matrix.fromSRAM2(6, 6, covs, i)

val (nx, nsig) = kalmanPredict(state, cov, F, U, Q)
nx.loadTo(states, i)
nsig.loadTo(covs, i)

})
}

@virtualize
def imuUpdate(acc: SAcceleration, particles: SRAM1[Particle],

parFactor: Int) = {
Foreach(0ك::N par parFactor)(i ׆ك {
val pp = particles(i)
val na = pp.q.rotate(acc)
particles(i) = Particle(pp.w, pp.q, na, pp.q)

})
}

@virtualize
def viconUpdate(
vicon: SPOSE,
dt: SReal,
particles: SRAM1[Particle],
states: SRAM2[SReal],
covs: SRAM3[SReal],
parFactor: Int) = {

val X: Option[SReal] = None
val S1: Option[SReal] = Some(1)

val h = Matrix.sparse(3, 6,
IndexedSeq[Option[SReal]](

X, X, X, S1, X, X,
X, X, X, X, S1, X,
X, X, X, X, X, S1

))

val r = Matrix.eye(3, covViconP)

val viconP = toMatrix(vicon.p)

covViconQMat
zeroVec

Foreach(0ك::N par parFactor)(i ׆ك {

val state = Matrix.fromSRAM1(6, states, i, true)
val cov = Matrix.fromSRAM2(6, 6, covs, i, true)

val (nx2, nsig2, lik) = kalmanUpdate(state, cov, viconP, h, r)
nx2.loadTo(states, i)
nsig2.loadTo(covs, i)

val pp = particles(i)
val nw = likelihoodSPOSE(vicon, lik._1, pp.q, lik._2)
particles(i) = Particle(pp.w + nw, pp.q, pp.lastA, pp.lastQ)

})
}

lazy val covViconQMat = Matrix.eye(3, covViconQ)

99

lazy val zeroVec = Matrix(3, 1, List[SReal](0, 0, 0))
@virtualize def likelihoodSPOSE(measurement: SPOSE,

expectedPosMeasure: Matrix,
quatState: SQuat,
covPos: Matrix) = {

val wPos = unnormalizedGaussianLogPdf(toMatrix(measurement.p),
expectedPosMeasure,
covPos)

val error = quatToLocalAngle(measurement.q.rotateBy(quatState.inverse))
val wSQuat = unnormalizedGaussianLogPdf(error, zeroVec, covViconQMat)
wPos + wSQuat

}

def sampleAtt(q: SQuat, om: SOmega, dt: SReal): SQuat = {
val withNoise = gaussianVec(toVec(om), covGyro)
val integrated = withNoise * dt
val lq = localAngleToQuat(integrated)
lq.rotateBy(q)

}

@virtualize def gaussianVec(mean: Vec, variance: SReal) = {
val reg = RegFile[SReal](3)
Real//ق sequential
Sequential.Foreach(02::ك)(i ׆ك {
val g1 = gaussian()

reg(i*2) = g1._1
if (i =!ك 1)
reg((i*2+1)) = g1._2

})
(Vec(3, RegId1(reg)) :* sqrt(variance)) :+ mean

}

Box-Muller//ق
www.design.caltech.edu/erik/Misc/Gaussian.htmlقق//ق:http//ق
@virtualize def gaussian() = {

val x1 = Reg[SReal]
val x2 = Reg[SReal]
val w = Reg[SReal]
val w2 = Reg[SReal]

FSM[Boolean, Boolean](true)(x ׆ك x)(x ׆ك {
x1 =:ك 2.0 * random[SReal](1.0) - 1.0
x2 =:ك 2.0 * random[SReal](1.0) - 1.0
w =:ك (x1 * x1 + x2 * x2)

})(x ׆ك w.value ك 1.0)

w2 =:ك sqrt((-2.0 * log(w.value)) / w)

val y1 = x1 * w2;
val y2 = x2 * w2;

(y1, y2)
}

@virtualize def normWeights(particles: SRAM1[Particle], parFactor: Int) = {
val maxR = Reduce(Reg[SReal])(0ك::N)(i ׆ك particles(i).w)(max(_,_))
val totalWeight = Reduce(Reg[SReal])(0ك::N)

(i ׆ك exp(particles(i).w - maxR))(_+_)
val norm = maxR + log(totalWeight)
Foreach(0ك::N par parFactor)(i ׆ك {
val p = particles(i)
particles(i) = Particle(p.w - norm, p.q, p.lastA, p.lastQ)

})
}

100

@virtualize def resample(particles: SRAM1[Particle], states: SRAM2[SReal],
covs: SRAM3[SReal], parFactor: Int) = {

val weights = SRAM[SReal](N)
val out = SRAM[Particle](N)
val outStates = SRAM[SReal](N, 6)
val outCovs = SRAM[SReal](N, 6, 6)

val u = random[SReal](1.0)

Foreach(0ك::N)(i ׆ك {
if (i ׃ك 0)

weights(i) = exp(particles(i).w)
else

weights(i) = weights(i-1) + exp(particles(i).w)
})

val k = Reg[Int](0)
Sequential.Foreach(0ك::N)(i ׆ك {
def notDone = (weights(k) * N < i.to[SReal] + u) ֶك k < N
FSM[Boolean, Boolean](notDone)(x ׆ك x)(x ׆ك k =:ك k + 1)(x ׆ك notDone)

Foreach(06::ك)(x ׆ك {
outStates(i, x) = states(k, x)

})
Foreach(06::ك,)(6::ك0 (y, x) ׆ك {

outCovs(i, y, x) = covs(k, y, x)
})

out(i) = particles(k)
})

Foreach(0ك::N)(i ׆ك {
val p = out(i)
Foreach(06::ك)(x ׆ك {

states(i, x) = outStates(i, x)
})
Foreach(06::ك,)(6::ك0 (y, x) ׆ك {

covs(i, y, x) = outCovs(i, y, x)
})
particles(i) = Particle(log(1.0/N), p.q, p.lastA, p.lastQ)

})
}

def unnormalizedGaussianLogPdf(measurement: Matrix, state: Matrix,
cov: Matrix): SReal = {

val e = (measurement :- state)
-1/2.0*((e.t*(cov.inv)*e).apply(0, 0))

}

def localAngleToQuat(v: Vec): SQuat = {
val n = (v*256).norm/256
val l = n / 2.0
val sl = sin(l)
println(v(0) + " " + v(1) + " " + v(2) + "" + n + " " + sl)
val nrot = v :* (sl / n)
SQuat(cos(l), nrot(0), nrot(1), nrot(2))

}

def quatToLocalAngle(q: SQuat): Matrix = {
val r: SReal = min(q.r, 1.0)
val n = acos(r) * 2
val s = n / sin(n / 2)

101

Matrix(3, 1, List(q.i, q.j, q.k)) :* s
}

def kalmanPredict(xp: Matrix, sigp: Matrix,
f: Matrix, u: Matrix,
q: Matrix) = {

val xm = f * xp :+ u
val sigm = (f * sigp * f.t) :+ q
(xm, sigm)

}

def kalmanUpdate(xm: Matrix, sigm: Matrix,
z: Matrix, h: Matrix,
r: Matrix) = {

val s = (h * sigm * h.t) :+ r
val k = sigm * h.t * s.inv
val sig = sigm :- (k * s * k.t)
val za = h * xm
val x = xm :+ (k * (z :- za))
(x, sig, (za, s))

}

@virtualize def averageSPOSE(particles: SRAM1[Particle],
states: SRAM2[SReal],
parFactor: Int): SPOSE = {

val firstQ = particles(0).q
val accumP = RegFile[SReal](3, List[SReal](0, 0, 0))
val accumQ = Reg[SQuat](SQuat(1, 0, 0, 0))
accumP.reset
accumQ.reset
Parallel {
Foreach(0ك::N par parFactor, (i,j))(3::ك0 ׆ك {

accumP(j) = accumP(j) + exp(particles(i).w) * states(i, j+3)
})

Reduce(accumQ)(0ك::N par parFactor)(i ׆ك {
val p = particles(i)
if (firstQ.dot(p.q) > 0.0)
p.q * exp(p.w)

else
p.q * -(exp(p.w))

})(_ + _)
}
SPOSE(SVec3(accumP(0), accumP(1), accumP(2)), accumQ)

}

102

References

[1] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally ef-
ficient motion primitive for quadrocopter trajectory generation,” IEEE Trans-
actions on Robotics, vol. 31, no. 6, pp. 1294–1310, 2015.

[2] F. L. Markley, Y. Cheng, J. L. Crassidis, and Y. Oshman, “Aver-
aging quaternions,” Journal of Guidance, Control, and Dynamics, vol. 30, no.
4, pp. 1193–1197, 2007.

[3] K. Edgar, “A Quaternion-based Unscented Kalman Filter for Ori-
entation Tracking.”.

[4] A. Doucet and A. M. Johansen, “A tutorial on particle filtering and
smoothing: Fifteen years later,” Handbook of nonlinear filtering, vol. 12, nos.
656-704, p. 3, 2009.

[5] P. Vernaza and D. D. Lee, “Rao-Blackwellized particle filtering
for 6-DOF estimation of attitude and position via GPS and inertial sensors,”
in Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE
International Conference on, 2006, pp. 1571–1578.

[6] D. Koeplinger, C. Delimitrou, R. Prabhakar, C. Kozyrakis, Y.
Zhang, and K. Olukotun, “Automatic generation of efficient accelerators for
reconfigurable hardware,” in Proceedings of the 43rd International Symposium
on Computer Architecture, 2016, pp. 115–127.

[7] R. Prabhakar et al., “Generating configurable hardware from par-
allel patterns,” ACM SIGOPS Operating Systems Review, vol. 50, no. 2, pp.
651–665, 2016.

103

	Table of Contents
	Introduction
	The decline of Moore's law
	The rise of Hardware
	Hardware as companion accelerators
	The right metric: Perf/Watt
	Spatial
	Embedded systems and drones

	Sensor fusion algorithm for POSE estimation of drones: Asynchronous Rao-Blackwellized Particle filter
	Drones and collision avoidance
	Sensor fusion
	Notes on notation and conventions
	POSE
	Trajectory data generation
	Quaternion
	Helper functions and matrices
	Model
	Sensors
	Control inputs
	Model dynamic
	State
	Observation
	Filtering and smoothing
	Complementary Filter
	Asynchronous Augmented Complementary Filter
	Kalman Filter
	Asynchronous Kalman Filter
	Extended Kalman Filters
	Unscented Kalman Filters
	Particle Filter
	Rao-Blackwellized Particle Filter
	Algorithm summary
	Results
	Conclusion

	A simulation tool for data flows with Spatial integration: scala-flow
	Purpose
	Source, Sink and Transformations
	Demo
	Block
	Graph construction
	Buffer and cycles
	Source API
	Batteries
	Batch
	Scheduler
	Replay
	Multi-Scheduler graph
	InitHook
	ModelHook
	NodeHook
	Graphical representation
	FlowApp
	Spatial integration
	Conclusion

	An interpreter for Spatial
	Spatial: A Hardware Description Language
	Argon
	Staged type
	IR
	Transformer and traversal
	Language virtualization
	Source Context
	Meta-expansion
	Codegen
	Staging compiler flow
	Simulation in Spatial
	Benefits of the interpreter
	Interpreter
	Usage
	Debugging nodes
	Interpreter stream
	Implementation
	Conclusion

	Spatial implementation of an asynchronous Rao-Blackwellized Particle Filter
	Area
	Parallel patterns
	Control flows
	Numeric types
	Vector and matrix module
	Mini Particle Filter
	Rao-Blackwellized Particle Filter
	Insights
	Conclusion

	Conclusion
	Acknowledgments
	Appendix
	Mini Particle Filter
	Rao-Blackwellized Particle Filter

	References

